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Table S1. Calculated composition of the lowest excited states and corresponding oscillator strengths 
along with the shapes of the orbitals participating in the electronic transitions for VO-EtioP-III. 

λ, 
nm 

F % Orbitals 

   From To 

607 0.02 32 

 

α-HOMO¶ (a) 

 

α-LUMO¶ (e) 

29 

 

β-HOMO¶ (a) 

 

β-LUMO¶ (e*) 

¶ Since monomeric VO-EtioP-III molecule is an open-shell system, the spectra were calculated 
using the sTDDFT approach, where two sets of orbitals α- and β- are optimized separately. 
Shapes of α-HOMO and β-HOMO (as well as LUMOs) have no visual differences, but there is 
some numeric inequality of the contributions of α-HOMOα-LUMO and  β-HOMOβ-LUMO 
transitions to the Q-band.  



20 

 

β-HOMO-1 (a) 

 

β-LUMO (e*) 

381 1.03 18 

 

β-HOMO-1 (a) 

 

β-LUMO (e*) 

18 

 

α-HOMO-1 (a) 

 

α-LUMO (e*) 

11 

 

α-HOMO (a) 

 

α-LUMO (e*) 



 Table S2. Calculated composition of the lowest excited states, corresponding oscillator strengths, 
shapes of the orbitals participating in the electronic transitions in the VO-EtioP-III tetramer. 

λ, nm F % Orbitals  
   From To 

614 0.06 11 

 
α-HOMO-4 

 
α-LUMO+1 

10 

 
α-HOMO 

 
α-LUMO+5 

10 

 
β-HOMO-4 

 
β-LUMO+1 

480 0.04 25 

 
β-HOMO-3 

 
β-LUMO+6 

25 

 
β-HOMO-2 

 
β-LUMO+7 

21 

 
α-HOMO-3 

 
α-LUMO+6 



392 0.27 10 

 
β-HOMO-10 

 
β-LUMO+1 

10 

 
α-HOMO-10  

α-LUMO 
10 

 
β-HOMO-6 

 
β-LUMO+1 

383 0.35 10 

 
α-HOMO-16  

α-LUMO 
8 

 
α-HOMO-16 

 
α-LUMO+3 

5 

 
α-HOMO-7 

 
α-LUMO+3 

382 0.6 15 

 
β-HOMO-10 

 
β-LUMO+3 



7 

 
α-HOMO-19 

 
α-LUMO 

366 1.00 10 

 
α-HOMO-3  

α-LUMO+6 
9 

 
β-HOMO-3 

 
β-LUMO+6 

6 

 
α-HOMO-1  

α-LUMO+4 
359 0.65 7 

 
α-HOMO-8 

 
α-LUMO+6 

6 

 
β-HOMO-8 

 
β-LUMO+6 

5 

 
α-HOMO-8 

 
α-LUMO+4 



Figure S1. Comparison of experimental spectra of VO-EtioP-III and InCl-EtioP-I in chloroform solutions 
(left panel) and thin films (right panel). 

  

Figure S2. 

 

 Deconvolution of experimental spectrum of VO-
EtioP-III in chloroform solution using a minimum 
number of Gaussian components [15]. The UV-band 
(max =  329 nm) is not deconvoluted. The baseline is 
subtracted. The fitting error is less than 6%. The 
inset shows the deconvolution for a methanol 
solution where both Q- and Soret bands split into 
two components. This is caused by the solvent 
envelope and/or perhaps the strong tendency of VO-
EtioP-III molecules to aggregate even in dilute 
alcohol solutions – see, [2]. 

 

 Deconvolution of experimental spectrum of a 70 
nm thick vacuum-deposited film shown in Figure 2. 
The fitting error is less than 8%. The increase in the 
half-width of the subpeaks (solid-state broadening) 
was no more than 15-25%. 

As seen from the Figure, bathochromic shift of the 
Q-band and Soret bands is accompanied by splitting 
and increase in intersubpeak distance, i.e. 
broadening.   

 

 Similarly deconvoluted spectrum of a 140 nm 
thick VO-EtioP-III film deposited under identical 
conditions to a thinner film (taken from Ref. [2]).  

The difference in the spectra of thinner and thicker 
film is due to an increase in the relative intensity of 
low-energy subpeaks (except that at ~580 nm), while 
their positions change very slightly. As a result, the 
Soret-band becomes broader. 



 


