SUPPLEMENTARY INFORMATION

«Halogen-free α, α -bis(BODIPY) bichromofore photosensitizer: synthesis, spectral properties and water-soluble forms with Pluronic[®] F127 micelles» by

Artem S. Sherudillo, Lubov A. Antin[®], Valeria A. Kalinkina Alexander A. Kalyagin, Alexander A. Ksenofontov, Vasily M. Babaev, Mikhail B. Berezin, Elena V. Antina

[@] Corresponding author E-mail: <u>lyubov.antina@mail.ru</u>

Content

Figure S1. Normalized absorption spectra of α, α -bis(BODIPY) and monomer analogue BODIPY in chloroform 3
Table S1. The xyz coordinates for optimized structure of the α, α -bis(BDP) in the S ₀ state 3
Table S2. The xyz coordinates for optimized structure of the α, α -bis(BDP) in the S ₁ state
Table S3. The xyz coordinates for optimized structure of the α, α -bis(BDP) in the T ₁ state 5
Figure S2. Potential energy surface scan for energies vs. the C16–C18–C19–C20 torsion angle of α, α -bis(BDP)6
Figure S4. Experimental absorption (black) and TDDFT (red) spectrum of the α,α-bis(BDP). The TDDFT spectrum is red-shifted at 87 nm (0.4 eV) for better comparison 7
Table S4. Results of TDDFT analysis for α,α-bis(BDP)
Table S5. The fit parameters of the time resolved fluorescence decays of α, α -bis(BDP) (C_{α,α -bis(BDP)} = 6.5 \muM) in different solvents
Table S6. Spectral and photophysical parameters of α , α -CH ₂ -bis(BDP) in organic solvents (T = 298 K) ^[1] 9
Table S7. The fit parameters of the time resolved fluorescence decays of α, α -bis(BDP) (C_{α,α -bis(BDP)} = 6.5 \muM) in THF-water mixture with different f_w
Figure S5. Absorption (<i>a</i>) spectra of α, α -bis(BDP) at C_{α,α -bis(BDP)} = 6.5 \muM and various volumetric water content (f_w) in the THF-water mixtures after 24 hours; dependences of maximum absorption wavelengths (<i>b</i>) of α, α -bis(BDP) on f_w in THF-water mixtures 10

Figure S1. Normalized absorption spectra of α, α -bis(BODIPY) and monomer analogue BODIPY in chloroform

Table S1. The xyz coordinates for optimized structure of the α,α -bis(BDP) in the S₀ state

F	1.006081000000	-0.873767000000	-1.299390000000
В	2.025835000000	0.004637000000	-0.991116000000
F	2.302178000000	0.834007000000	-2.079113000000
Ν	3.328179000000	-0.780159000000	-0.620849000000
С	3.933770000000	-1.715616000000	-1.347833000000
Č	3.374601000000	-2.228440000000	-2.625359000000
Č	5.134186000000	-2.118361000000	-0.714714000000
Č	6.075679000000	-3.158400000000	-1.228219000000
Č	5.248406000000	-1.374906000000	0.443461000000
Ĉ	6.343101000000	-1.444183000000	1.453598000000
Ĉ	4 108240000000	-0 533729000000	0 498479000000
Č	3.706825000000	0.383082000000	1.440699000000
Č	2.509477000000	1.075736000000	1.335988000000
Č	1.892436000000	1.976934000000	2.226153000000
Č	2.430827000000	2.473683000000	3.52300000000
Č	0.659816000000	2 302704000000	1 675583000000
č	-0.362840000000	3.225115000000	2.247634000000
C	0.562145000000	1 589825000000	0.472101000000
č	-0 562434000000	1 590486000000	-0 470016000000
č	-0.660327000000	2 305209000000	-1 672421000000
c	0.362316000000	3 228435000000	-2 243213000000
č	-1 893099000000	1 980374000000	-2 223176000000
č	-2.431678000000	2 478846000000	-3 519281000000
č	-2.510010000000	1 077864000000	-1 334226000000
N	-1 671007000000	0.868266000000	-0 257480000000
B	-2 025864000000	0.003133000000	0.991100000000
F	-1.005837000000	-0.875295000000	1 298246000000
F	-2 302609000000	0.830925000000	2 080240000000
N	-3 327872000000	-0 781499000000	0.619585000000
C	-3.932749000000	-1 718768000000	1 344852000000
c	-3 372427000000	-2 233879000000	2 620955000000
C	-5 13342600000	-2.233877000000	0.711558000000
c	-6 074451000000	-3 161873000000	1 223025000000
c	-5.248429000000	-1 37449900000	-0.444992000000
C	-6 344045000000	-1.374499000000	-1.454275000000
C	-4 108558000000	-0.532879000000	-0.49879000000
C	-3 707478000000	0.385536000000	-0.49679000000
N	1 670728000000	0.867841000000	0.258707000000
н	2 526114000000	-2 886758000000	-2 42840500000
н	3.008155000000	-1.408561000000	-2.426405000000
н	4 129943000000	-2 786653000000	-3 176217000000
н	6 477372000000	-2.780055000000	-2 208214000000
н	6 91989400000	-2.007204000000	-0.551094000000
н	5 58502000000	-4 12883000000	-1 33300600000
н	6 384012000000	-2.43120800000	1 919607000000
н	7 31476100000	-1 26182600000	0.99004300000
н	6 21138500000	-0 70869900000	2 24636200000
н	4 33276100000	0 554572000000	2.240302000000
н	2 44980600000	3 56587800000	3 54148900000
11	2.777000000000	5.50507000000	5.57170700000

Н	3.443897000000	2.119591000000	3.712418000000
Η	1.799643000000	2.149055000000	4.353647000000
Н	0.080154000000	4.192037000000	2.498830000000
Η	-1.176004000000	3.392713000000	1.542625000000
Η	-0.805014000000	2.808440000000	3.153975000000
Η	-0.080835000000	4.195536000000	-2.493475000000
Η	1.175204000000	3.395463000000	-1.537761000000
Η	0.804776000000	2.812851000000	-3.149904000000
Η	-3.446790000000	2.129441000000	-3.706494000000
Η	-2.445521000000	3.571090000000	-3.538392000000
Η	-1.803690000000	2.150747000000	-4.351005000000
Η	-4.125170000000	-2.798852000000	3.168420000000
Η	-2.519586000000	-2.886011000000	2.422372000000
Η	-3.011696000000	-1.414374000000	3.242118000000
Η	-5.585159000000	-4.133833000000	1.319830000000
Η	-6.471347000000	-2.897896000000	2.206349000000
Η	-6.921967000000	-3.285612000000	0.548952000000
Η	-6.208841000000	-0.709456000000	-2.249713000000
Η	-6.390713000000	-2.429808000000	-1.91675000000
Н	-7.314437000000	-1.252113000000	-0.990751000000
Н	-4.333743000000	0.558515000000	-2.30510000000

Table S2. The xyz coordinates for optimized structure of the $\alpha,\alpha\text{-bis}(BDP)\,$ in the S_1 state

F	1.117402000000	-0.596424000000	-1.455125000000
В	2.140336000000	0.219257000000	-1.004994000000
F	2.453663000000	1.177693000000	-1.970952000000
Ν	3.427235000000	-0.613690000000	-0.723769000000
С	4.041097000000	-1.443904000000	-1.570347000000
С	3.488292000000	-1.780327000000	-2.904949000000
С	5.248262000000	-1.916235000000	-0.989864000000
С	6.184338000000	-2.875581000000	-1.647212000000
С	5.358157000000	-1.327417000000	0.255919000000
С	6.422561000000	-1.501606000000	1.284440000000
С	4.206568000000	-0.510486000000	0.417835000000
С	3.783426000000	0.244135000000	1.495053000000
С	2.550812000000	0.893963000000	1.474225000000
С	1.845690000000	1.486913000000	2.549018000000
С	2.382957000000	1.711003000000	3.920824000000
С	0.577803000000	1.771701000000	2.088058000000
С	-0.494878000000	2.484163000000	2.838141000000
С	0.545121000000	1.391704000000	0.714265000000
С	-0.544636000000	1.550337000000	-0.204005000000
С	-0.576798000000	2.369660000000	-1.370350000000
С	0.495837000000	3.292374000000	-1.838186000000
С	-1.844768000000	2.256623000000	-1.900285000000
С	-2.381097000000	2.928594000000	-3.117439000000
С	-2.550110000000	1.336924000000	-1.087362000000
Ν	-1.749723000000	0.958023000000	-0.026941000000
В	-2.137185000000	-0.136856000000	1.017353000000
F	-1.115763000000	-1.059799000000	1.156971000000
F	-2.442744000000	0.434562000000	2.254036000000
Ν	-3.428208000000	-0.821505000000	0.475192000000
С	-4.043270000000	-1.887338000000	0.993554000000
С	-3.489258000000	-2.654076000000	2.135923000000
С	-5.252067000000	-2.133959000000	0.289892000000
С	-6.190507000000	-3.256376000000	0.586790000000
С	-5.361405000000	-1.159837000000	-0.684698000000
С	-6.427123000000	-0.977442000000	-1.710513000000
С	-4.208003000000	-0.338637000000	-0.563989000000
С	-3.783522000000	0.733580000000	-1.324816000000
Ν	1.750319000000	0.893819000000	0.348225000000
Н	2.591952000000	-2.397161000000	-2.802672000000
Н	3.188350000000	-0.875568000000	-3.436312000000
Н	4.221698000000	-2.322379000000	-3.499466000000
Н	6.534194000000	-2.496791000000	-2.610648000000
Н	7.061308000000	-3.060813000000	-1.028038000000
Н	5.703634000000	-3.839375000000	-1.832446000000
Н	6.085881000000	-2.149339000000	2.098976000000

Η	7.319652000000	-1.949004000000	0.858031000000
Η	6.707927000000	-0.544148000000	1.725110000000
Н	4.378301000000	0.271752000000	2.397419000000
Н	1.816966000000	2.486303000000	4.437405000000
Н	3.430079000000	2.018040000000	3.898031000000
Н	2.316127000000	0.801630000000	4.524428000000
Η	-0.101698000000	3.405626000000	3.275061000000
Η	-1.332297000000	2.737550000000	2.192587000000
Η	-0.887588000000	1.865662000000	3.645161000000
Η	0.102102000000	4.306553000000	-1.942827000000
Η	1.332705000000	3.316274000000	-1.144503000000
Η	0.889895000000	2.979006000000	-2.804908000000
Η	-3.431402000000	3.200204000000	-2.998048000000
Η	-1.822049000000	3.838434000000	-3.336660000000
Η	-2.302945000000	2.279035000000	-3.993630000000
Η	-4.216510000000	-3.375691000000	2.503930000000
Η	-2.583717000000	-3.186534000000	1.834784000000
Η	-3.203161000000	-1.982099000000	2.946939000000
Η	-5.714490000000	-4.227463000000	0.429482000000
Η	-6.533960000000	-3.227266000000	1.623708000000
Η	-7.071077000000	-3.216161000000	-0.053342000000
Η	-6.687052000000	0.076353000000	-1.828712000000
Η	-6.105153000000	-1.347028000000	-2.688368000000
Н	-7.336494000000	-1.513073000000	-1.440026000000
Н	-4.378185000000	1.063907000000	-2.165114000000

Table S3. The xyz coordinates for optimized structure of the α,α -bis(BDP) in the T₁ state

F	1.025888000000	-0.770304000000	-1.37137400000
B	2.051834000000	0.076324000000	-1.000759000000
F	2.357324000000	0.956453000000	-2.040357000000
N	3.339764000000	-0.739328000000	-0.650451000000
С	3.946228000000	-1.646350000000	-1.411166000000
Ĉ	3.394260000000	-2.101745000000	-2.713161000000
С	5.140746000000	-2.081067000000	-0.786413000000
С	6.080529000000	-3.104146000000	-1.335607000000
С	5.250152000000	-1.386938000000	0.401752000000
С	6.337171000000	-1.502940000000	1.415738000000
С	4.112919000000	-0.542586000000	0.483876000000
С	3.706479000000	0.331780000000	1.462226000000
С	2.509228000000	1.030336000000	1.379789000000
С	1.874335000000	1.869248000000	2.316027000000
С	2.398313000000	2.299967000000	3.642056000000
С	0.638645000000	2.206973000000	1.778780000000
С	-0.393962000000	3.088080000000	2.396126000000
С	0.559288000000	1.566596000000	0.533233000000
С	-0.555686000000	1.603553000000	-0.410927000000
С	-0.651386000000	2.351953000000	-1.610386000000
С	0.385864000000	3.288259000000	-2.130528000000
С	-1.871252000000	2.055070000000	-2.166385000000
С	-2.462985000000	2.554639000000	-3.435502000000
С	-2.512349000000	1.109616000000	-1.290786000000
Ν	-1.693808000000	0.878071000000	-0.219313000000
В	-2.035475000000	-0.041406000000	0.984041000000
F	-1.009393000000	-0.936903000000	1.239535000000
F	-2.290766000000	0.723456000000	2.127654000000
Ν	-3.333686000000	-0.792508000000	0.578172000000
С	-3.951779000000	-1.777444000000	1.288437000000
С	-3.386424000000	-2.320180000000	2.542678000000
С	-5.15347000000	-2.148703000000	0.630652000000
С	-6.086915000000	-3.205685000000	1.118990000000
С	-5.261097000000	-1.364231000000	-0.494382000000
С	-6.315017000000	-1.333968000000	-1.543652000000
С	-4.101924000000	-0.510204000000	-0.511180000000
C	-3.73206000000	0.459029000000	-1.448352000000
Ń	1.682965000000	0.876217000000	0.285360000000
H	2.52586000000	-2.74320800000	-2.550931000000
Ĥ	3.058166000000	-1.252084000000	-3.307247000000
Н	4.143451000000	-2.660068000000	-3.271984000000

Η	6.487312000000	-2.798874000000	-2.302753000000
Η	6.921330000000	-3.262674000000	-0.660482000000
Η	5.586659000000	-4.067862000000	-1.479670000000
Η	6.378669000000	-2.512104000000	1.831391000000
Η	7.311491000000	-1.293656000000	0.969421000000
Н	6.196335000000	-0.808926000000	2.243493000000
Η	4.323657000000	0.460128000000	2.341861000000
Н	2.395340000000	3.389382000000	3.723975000000
Н	3.417761000000	1.955786000000	3.814801000000
Η	1.770979000000	1.915167000000	4.449572000000
Н	0.035810000000	4.052284000000	2.679173000000
Η	-1.218602000000	3.268503000000	1.708112000000
Η	-0.817965000000	2.629102000000	3.290324000000
Η	-0.056459000000	4.253385000000	-2.385605000000
Η	1.169786000000	3.451926000000	-1.392612000000
Η	0.864257000000	2.882909000000	-3.022586000000
Η	-3.438711000000	3.018284000000	-3.265705000000
Η	-1.814272000000	3.292457000000	-3.906241000000
Η	-2.612963000000	1.738090000000	-4.14787400000
Η	-4.078301000000	-3.020374000000	3.007159000000
Η	-2.439759000000	-2.828823000000	2.345260000000
Η	-3.164284000000	-1.511794000000	3.242518000000
Η	-5.586548000000	-4.173962000000	1.191380000000
Η	-6.474717000000	-2.964471000000	2.111426000000
Η	-6.938711000000	-3.322168000000	0.450617000000
Η	-6.775817000000	-0.344427000000	-1.61078000000
Н	-5.896734000000	-1.560818000000	-2.52840500000
Н	-7.104661000000	-2.056432000000	-1.342196000000
н	-4.351389000000	0.655788000000	-2.308921000000

Figure S2. Potential energy surface scan for energies vs. the C16–C18–C19–C20 torsion angle of α,α-bis(BDP)

Figure S3. α, α -bis(BDP) geometry in S₀, S₁, and T₁ states

Figure S4. Experimental absorption (black) and TDDFT (red) spectrum of the α,α -bis(BDP). The TDDFT spectrum is red-shifted at 87 nm (0.4 eV) for better comparison

Table S4. Results of TDDFT analysis for α , α -bis(BDP)

Transition (%)	Energy, eV (nm)	Oscillator strength	FMO type
HOMO – LUMO (33)	2.61 (475)	0.90	HOMO LUMO
HOMO – LUMO+1 (25)	2.94 (422)	0.62	LUMO+1
HOMO-4 – LUMO (18)	3.99 (311)	0.18	HOMO-4

HOMO-6 – LUMO (30)	5.51 (225)	0.36	HOMO-6
HOMO – LUMO+2 (33)	6.19 (200)	0.34	LUMO+2
HOMO-2 – LUMO+2 (7)	7.1686	0.24	HOMO-2
HOMO-18 – LUMO (5)	7.27	0.20	HOMO+18
HOMO-4 – LUMO+4 (8)	7.28	0.32	LUMO+4
HOMO-1 – LUMO+8 (5)	7.31	0.20	LUMO+8

Table S5. The fit parameters of the time resolved fluorescence decays of α, α -bis(BDP) (C_{α,α -bis(BDP)} = 6.5 \muM) in different solvents

Solvent	λη	fit	χ^2	τ_1 , ns	A ₁	τ_2 , ns	A ₂	τ3, ns	A ₃	τ, ns
Cyclohexane	648	mono	1.31	3.437 ± 0.002	11.44	-	-	-	-	3.44
Benzene	653	mono	1.23	3.321 ± 0.006	11.59	-	-	-	-	3.32
Toluene	651	mono	1.21	3.322 ± 0.004	11.39	-	-	-	-	3.32
Chloroform	650	mono	1.20	3.414 ± 0.004	11.49	-	-	-	-	3.41
THF	650	mono	1.26	3.216 ± 0.006	11.53	-	-	-	-	3.22
Ethanol	648	bi	1.26	0.979 ± 0.003	13.53	3.65 ± 0.34	0.095	-	-	1.05
DMF	653	bi	1.24	0.783 ± 0.004	14.43	2.67 ± 0.46	0.088	-	-	0.82
ACN	649	three	1.44	0.150 ± 0.056	4.60	4.39±0.38	0.027	$0.338{\pm}0.009$	16.4	0.39
DMSO	656	bi	1.35	0.509 ± 0.002	16.42	4.57±0.33	0.034	-	-	0.58

Table S6. Spectral and photophysical parameters of α, α -CH₂-bis(BDP) in organic solvents (T = 298 K)^[1]

Solvent	$\lambda_{\rm abs}$, nm (lg ϵ)	$\Delta v_{\rm es},$ cm ⁻¹	λ _{fl} , nm	⊿vss, cm ⁻¹	$arPhi_{fl}$	$K_{\rm rad} \cdot 10^{-8}, {\rm s}^{-1}$	$K_{nrad} \cdot 10^{-8}, s^{-1}$	$ au_{\mathrm{fl}}$, ns
heptane	562; 500; 378	2207	578	493	0.80	2.22	0.30	3.97
cyclohexane	564; 501; 385	2230	580	490	0.99	2.94	0.03	3.37
benzene	566 (5.01); 500; 380	2332	583	515	0.87	2.40	0.36	3.63
chloroform	564 (5.11); 500;381	2270	581	519	0.95	2.75	0.15	3.46
THF	559; 495; 376	2312	580	647	0.58	1.89	1.37	3.06
ethanol	557 (5.08); 496; 377	2208	573	501	0.10	1.27	11.39	0.79
DMF	556 (5.04); 495; 382	2216	583	833	0.05	0.65	12.3	0.77
DMSO	556; 496; 381	2176	581	774	0.08	0.85	9.79	0.94

Note: absorption maxima (λ_{abs} , nm), molar absorption coefficients (lg ϵ), exciton splitting (Δv_{es} , cm⁻¹), emission maxima (λ_{fl} , nm), Stokes shift (Δv_{SS} , cm⁻¹), fluorescence quantum yield (Φ_{fl}), fluorescence lifetime (τ_{fl} , ns), radiative constants K_{rad} , s⁻¹) and non-radiative (K_{nrad} , s⁻¹). *The intensity of singlet oxygen generation is close to zero, regardless of the solvent*.

Table S7. The fit parameters of the time resolved fluorescence decays of α, α -bis(BDP) ($C_{\alpha,\alpha-bis(BDP)} = 6.5 \mu M$) in THF-water mixture with different f_w

f_w %, ($\lambda_{\rm fl}$)	fit	χ^2	τ_1 , ns	A ₁	τ_2 , ns	A_2	τ ₃ , ns	A ₃	τ, ns
0 (649)	mono	1.30	3.219±0.003	11.6	-	-	-	-	3.219±0.003
70 (665)	three	1.39	0.798 ± 0.034	6.4	4.50±0.33	0.05	0.377 ± 0.029	10.37	0.711 ± 0.009
93 (661)	three	1.53	0.545 ± 0.043	5.9	3.97 ± 0.94	0.02	0.277 ± 0.021	12.90	0.449 ± 0.009
95 (660)	three	1.59	0.523 ± 0.018	4.6	5.53 ± 0.52	0.01	$0.244{\pm}0.008$	15.83	0.415 ± 0.008

Figure S5. Absorption (*a*) spectra of α, α -bis(BDP) at C_{α, α -bis(BDP)} = 6.5 \muM and various volumetric water content (f_w) in the THF-water mixtures after 24 hours; dependences of maximum absorption wavelengths (*b*) of α, α -bis(BDP) on f_w in THF-water mixtures.

References

1. a) A. Kalyagin, L. Antina, A. Ksenofontov, E. Antina, M. Berezin, *IJMS* **2022**, *23*, 14402; b) L. A. Antina, V. A. Kalinkina, A. S. Sherudillo, A. A. Kalyagin, M. M. Lukanov, A. A. Ksenofontov, M. B. Berezin, E. V. Antina, *Journal of Luminescence* **2024**, *269*, 120411.