Dimer of Pd(II) β-Octaethylporphyrin Bound by a 1,3-Butadiene Bridge

DOI: 10.6060/mhc224638z

  • Ekaterina A. Orlova
  • Yuliya V. Romanenko
  • Vladimir S. Tyurin
  • Alena O. Shkirdova
  • Evgeny S. Belyaev
  • Mikhail S. Grigoriev
  • Oskar I. Koifman
  • Ilya A. Zamilatskov

Аннотация

A method for obtaining porphyrin dimers bound by a 1,3-butadiene bridge through homocoupling of 2-boronylethenylporphyrins has been developed. The homocoupling reaction proceeds under mild conditions at room temperature using tetrakistriphenylphosphine palladium as a catalyst in the presence of the oxidizer silver oxide Ag2O. The corresponding dimeric product was obtained from palladium meso-(2-pinacolboronylethenyl)-b-octaethylporphyrinate. The UV-Vis absorption spectrum of the dimeric product is slightly different from that of the monomeric palladium meso-vinyl-b-octaethylporphyrinate, which indicates the absence of p-electronic conjugation between tetrapyrrole aromatic systems. The DFT calculation of the dimer showed that the orthogonal orientation of the butadiene bridge with respect to the plane of tetrapyrrole macrocycles is realized.

Литература

Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k

Xiao L., Lai T., Liu X., Liu F., Russell T.P., Liu Y., Huang F., Peng X., Cao Y. J. Mater. Chem. A 2018, 6, 18469-18478. https://doi.org/10.1039/C8TA05903A

Watanabe M., Sun S., Ishihara T., Kamimura T., Nishimura M., Tani F. ACS Appl. Energy Mater. 2018, 1, 6072-6081. https://doi.org/10.1021/acsaem.8b01113

Xiao L., Chen S., Chen X., Peng X., Cao Y., Zhu X. J. Mater. Chem. C 2018, 6, 3341-3345. https://doi.org/10.1039/C8TC00270C

Xun Z., Zeng Y., Chen J., Yu T., Zhang X., Yang G., Li Y. Chem. - Eur. J. 2016, 22, 8654-8662. https://doi.org/10.1002/chem.201504498

Kadish K., Guilard R., Smith K.M. The Porphyrin Handbook: Multiporphyrins, Multiphthalocyanines and Arrays. Elsevier Science, 2012.

Drobizhev M., Stepanenko Y., Dzenis Y., Karotki A., Rebane A., Taylor P.N., Anderson H.L. J. Am. Chem. Soc. 2004, 126, 15352-15353. https://doi.org/10.1021/ja0445847

Ohira S., Brédas J.-L. J. Mater. Chem. 2009, 19, 7545-7550. https://doi.org/10.1039/b906337d

Balaz M., Collins H.A., Dahlstedt E., Anderson H.L. Org. Biomol. Chem. 2009, 7, 874-888. https://doi.org/10.1039/b814789b

Dahlstedt E., Collins H.A., Balaz M., Kuimova M.K., Khurana M., Wilson B.C., Phillips D., Anderson H.L. Org. Biomol. Chem. 2009, 7, 897-904. https://doi.org/10.1039/b814792b

Robbins E., Leroy-Lhez S., Villandier N., Samoć M., Matczyszyn K. Molecules 2021, 26, 6323. https://doi.org/10.3390/molecules26206323

Wang K., Osuka A., Song J. ACS Central Science 2020, 6, 2159-2178. https://doi.org/10.1021/acscentsci.0c01300

Miyaura N., Suzuki A. Chem. Rev. 1995, 95, 2457-2483. https://doi.org/10.1021/cr00039a007

Suzuki A. Angew. Chem. Int. Ed. 2011, 50, 6722-6737. https://doi.org/10.1002/anie.201101379

Catellani M., Motti E., Della Ca N., Ferraccioli R. Eur. J. Org. Chem. 2007, 2007(25), 4153-4165. https://doi.org/10.1002/ejoc.200700312

Knappke C.E.I., Grupe S., Gärtner D., Corpet M., Gosmini C., von Wangelin J.A. Chem. - Eur. J. 2014, 20, 6828-6842. https://doi.org/10.1002/chem.201402302

Nelson T.D., Crouch R.D. In: Organic Reactions, pp. 265-555.

Valiente A., Carrasco S., Sanz-Marco A., Tai C.-W., Gómez A.B., Martín-Matute B. ChemCatChem 2019, 11, 3933-3940. https://doi.org/10.1002/cctc.201900556

Cravotto G., Palmisano G., Tollari S., Nano G.M., Penoni A. Ultrason. Sonochem. 2005, 12, 91-94. https://doi.org/10.1016/j.ultsonch.2004.05.005

Wu N., Li X., Xu X., Wang Y., Xu Y., Chen X. Lett. Org. Chem. 2010, 7, 11-14. https://doi.org/10.2174/157017810790534002

Yuan C., Zheng L., Zhao Y. Molecules 2019, 24, 3678. https://doi.org/10.3390/molecules24203678

Mulla S.A.R., Chavan S.S., Pathan M.Y., Inamdar S.M., Shaikh T.M.Y. RSC Adv. 2015, 5, 24675-24680. https://doi.org/10.1039/C4RA16760K

Santos-Filho E.F., Sousa J.C., Bezerra N.M.M., Menezes P.H., Oliveira R.A. Tetrahedron Lett. 2011, 52, 5288-5291. https://doi.org/10.1016/j.tetlet.2011.08.008

Parrish J.P., Jung Y.C., Floyd R.J., Jung K.W. Tetrahedron Lett. 2002, 43, 7899-7902. https://doi.org/10.1016/S0040-4039(02)01894-4

Adamo C., Amatore C., Ciofini I., Jutand A., Lakmini H. J. Am. Chem. Soc. 2006, 128, 6829-6836. https://doi.org/10.1021/ja0569959

Smith K.A., Campi E.M., Jackson W.R., Marcuccio S., Naeslund C.G.M., Deacon G.B. Synlett 1997, 1, 131-132. https://doi.org/10.1055/s-1997-710

Zhou Z., Hu Q., Du Z., Xue J., Zhang S., Xie Y. Synth. React. Inorg. M. 2012, 42, 940-943. https://doi.org/10.1080/15533174.2011.652280

Darzi E.R., White B.M., Loventhal L.K., Zakharov L.N., Jasti R. J. Am. Chem. Soc. 2017, 139, 3106-3114. https://doi.org/10.1021/jacs.6b12658

Demir A.S., Reis Ö., Emrullahoglu M. J. Org. Chem. 2003, 68, 10130-10134. https://doi.org/10.1021/jo034680a

Cheng G., Luo M. Eur. J. Org. Chem. 2011, 2011(13), 2519-2523. https://doi.org/10.1002/ejoc.201001729

Wang L., Wang H., Zhang W., Zhang J., Lewis J.P., Meng X., Xiao F.-S. J. Catal. 2013, 298, 186-197. https://doi.org/10.1016/j.jcat.2012.11.020

Karanjit S., Ehara M., Sakurai H. Chem. - Asian J. 2015, 10, 2397-2403. https://doi.org/10.1002/asia.201500535

Yamamoto Y. Synlett 2007, 2007(12), 1913-1916. https://doi.org/10.1055/s-2007-984531

Amatore C., Cammoun C., Jutand A. Eur. J. Org. Chem. 2008, 2008(27), 4567-4570. https://doi.org/10.1002/ejoc.200800631

Vogler T., Studer A. Adv. Synth. Catal. 2008, 350, 1963-1967. https://doi.org/10.1002/adsc.200800300

Tyagi D., Binnani C., Rai R.K., Dwivedi A.D., Gupta K., Li P.-Z., Zhao Y., Singh S.K. Inorg. Chem. 2016, 55, 6332-6343. https://doi.org/10.1021/acs.inorgchem.6b01115

Elias W.C., Signori A.M., Zaramello L., Albuquerque B.L., de Oliveira D.C., Domingos J.B. ACS Catal. 2017, 7, 1462-1469. https://doi.org/10.1021/acscatal.6b03490

Belyaev E.S., Shkirdova A.O., Kozhemyakin G.L., Tyurin V.S., Emets V.V., Grinberg V.A., Cheshkov D.A., Ponomarev G.V., Tafeenko V.A., Radchenko A.S., Kostyukov A.A., Egorov A.E., Kuzmin V.A., Zamilatskov I.A. Dyes Pigm. 2021, 191, 109354. https://doi.org/10.1016/j.dyepig.2021.109354

Sessler J.L., Mozaffari A., Johnson M.R. Org. Synth. 1992, 70, 68-75. https://doi.org/10.15227/orgsyn.070.0068

Buchler J.W., Puppe L. Liebigs Ann. Chem. 1974, 1974(7), 1046-1062. https://doi.org/10.1002/jlac.197419740705

Adler A.D., Longo F.R., Kampas F., Kim J. J. Inorg. Nucl. Chem. 1970, 32, 2443-2445. https://doi.org/10.1016/0022-1902(70)80535-8

Buchler J.W., Dreher C., Herget G. Liebigs Ann. Chem. 1988, 1988(1), 43-54. https://doi.org/10.1002/jlac.198819880110

Kalisch W.W., Senge M.O., Ruhlandt-Senge K. Photochem. Photobiol. 1998, 67, 312-323. https://doi.org/10.1111/j.1751-1097.1998.tb05204.x

Shkirdova A.O., Zamilatskov I.A., Stanetskaya N.M., Tafeenko V.A., Tyurin V.S., Chernyshev V.V., Ponomarev G.V., Tsivadze A.Y. Macroheterocycles 2017, 10, 480-486. https://doi.org/10.6060/mhc171148z

Erzina D.R., Zamilatskov I.A., Stanetskaya N.M., Tyurin V.S., Kozhemyakin G.L., Ponomarev G.V., Chernyshev V.V., Fitch A.N. Eur. J. Org. Chem. 2019, 2019(7), 1508-1522. https://doi.org/10.1002/ejoc.201801659

Sheldrick G.M. SADABS, Bruker AXS: Madison, Wisconsin (USA), 2008.

Sheldrick G. Acta Crystallogr. A 2008, 64, 112-122. https://doi.org/10.1107/S0108767307043930

Sheldrick G. Acta Crystallogr. C 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT. 2013.

Huang L., Kakadiaris E., Vaneckova T., Huang K., Vaculovicova M., Han G. Biomaterials 2019, 201, 77-86. https://doi.org/10.1016/j.biomaterials.2019.02.008

Mazur L.M., Roland T., Leroy-Lhez S., Sol V., Samoc M., Samuel I.D.W., Matczyszyn K. J. Phys. Chem. B 2019, 123, 4271-4277. https://doi.org/10.1021/acs.jpcb.8b12561

Johnson A.W., Oldfield D. J. Chem. Soc. C 1966, 794-798. https://doi.org/10.1039/J39660000794

Belyaev E.S., Kozhemyakin G.L., Tyurin V.S., Frolova V.V., Lonin I.S., Ponomarev G.V., Buryak A.K., Zamilatskov I.A. Org. Biomol. Chem. 2022, 20, 1926-1932. https://doi.org/10.1039/D1OB02005F

García-Domínguez A., Leach A.G., Lloyd-Jones G.C. Accounts Chem. Res. 2022, 55, 1324-1336. https://doi.org/10.1021/acs.accounts.2c00113

Sable V., Maindan K., Kapdi A.R., Shejwalkar P.S., Hara K. ACS Omega 2017, 2, 204-217. https://doi.org/10.1021/acsomega.6b00326

Lagoda N.A., Kurokhtina A.A., Larina E.V., Chechil E.V., Shmidt A.F. Proceedings of Irkutsk State Technical University 2013, 73(2), 141-147. http://journals.istu.edu/vestnik_irgtu/journals/2013/02

Safar Sajadi S.M., Khoee S. Scie. Rep. 2021, 11, 2832. https://doi.org/10.1038/s41598-021-82256-7

Опубликован
2022-12-29
Как цитировать
Orlova, E., Romanenko, Y., Tyurin, V., Shkirdova, A., Belyaev, E., Grigoriev, M., Koifman, O., & Zamilatskov, I. (2022). Dimer of Pd(II) β-Octaethylporphyrin Bound by a 1,3-Butadiene Bridge. Макрогетероциклы/Macroheterocycles, 15(3), 139-146. извлечено от http://mhc-isuct.ru/article/view/4638
Раздел
Порфирины