Surface Properties, Interface Events and Energy Relaxation Processes in Nanoassemblies Based on Ag-In-S/ZnS Quantum Dots and Porphyrins

  • Eduard I. Zenkevich Belarussian National Technical University
  • Vladimir В. Sheinin G.A. Krestov Institute of Solution Chemistry
  • Olga M. Kulikova G.A. Krestov Institute of Solution Chemistry
  • Oskar I. Koifman G.A. Krestov Institute of Solution Chemistry

Аннотация

Based on comparative experimental spectral-kinetic data and quantum chemical calculations (method MM+) it was argued that in water at pH 7.5 and ambient temperature, electrostatic interactions of positively charged 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin molecules (free bases) with negatively charged glutathione stabilized core/shell semiconductor quantum dots (QD) AIS/ZnS/GSH lead to the formation of stable «QD-porphyrin» nanoassemblies. The obtained results indicate that interaction of AIS/ZnS/GSH QDs with positively charged H2P4+ molecules is not described appropriately by the Poisson statistics (the nanoassembly stoichiometry is 1:1), and followed by a very fast metalation of porphyrin free base (formation of the extra-ligated Zn-porphyrin complex) which is directly fixed on the QD surface. The detailed analysis of experimental results and structural parameters for the size-consistent 3D model of the above «QD-porphyrin» nanoassembly evidently showed for the first time that the non-radiative relaxation of QD excitonic excitation energy is due to competitive processes: FRET QD®porphyrin and the electron tunneling through the ZnS barrier to the outer interface of the QD in conditions of quantum confinement.

Литература

Lehn J.-M. Angew. Chem., Int. Ed. 1988, 27, 89-112. https://doi.org/10.1002/anie.198800891

Balzani V., Gómez-López M., Stoddart J.F. Acc. Chem. Res. 1998, 31, 405-414. https://doi.org/10.1021/ar970340y

Livoreil A., Dietrich-Buchecker C.O., Sauvage J.-P. J. Am. Chem. Soc. 1994, 116, 9399-9400. https://doi.org/10.1021/ja00099a095

Krause S., Feringa, B.L. Nat. Rev. Chem. 2020, 4, 550-562. https://doi.org/10.1038/s41570-020-0209-9

Zenkevich E., von Borczyskowski C. Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics. Singapore: Pan Stanford. 2016. 408 p. https://doi.org/10.1201/9781315364544

Pochan D., Scherman O. Chem. Rev. 2021, 121, 13699-13700. https://doi.org/10.1021/acs.chemrev.1c00884

Jin Z., Dridi N., Palui G., Palomo V., Jokerst J.V., Dawson P.E., Amy Sang Q.-X., Mattoussi H. Anal. Chem. 2023, 95, 2713-2722. https://doi.org/10.1021/acs.analchem.2c03400

Navalón S., Dhakshinamoorthy A., Álvaro M., Ferrer B., García H. Chem. Rev. 2023, 123, 445-490. https://doi.org/10.1021/acs.chemrev.2c00460

Zhong H., Wang M., Ghorbani-Asl M., Zhang J., Ly K.H., Liao Z., Chen G., Wei Y., Biswal B.P., Zschech E., Weidinger I.M., Krasheninnikov A.V., Dong R., Feng X. J. Am. Chem. Soc. 2021, 143, 19992−20000. https://doi.org/10.1021/jacs.1c11158

Ohta K. Physics and Chemistry of Molecular Assemblies. Singapore: World Scientific. 2020. https://doi.org/10.1142/11703

Bertino M.F. Introduction to Nanotechnology. Singapore: World Scientific. 2021. https://doi.org/10.1142/12142

Zhang X., Lu Y., Sun J., Liu Y., Dong H., Li C., Li Y., Jiang L. ACS Materials Lett. 2022, 4, 548−553. https://doi.org/10.1021/acsmaterialslett.1c00844

Li D.J., Li Q.H., Gu Z.G., Zhang J. Nano Lett. 2021, 21, 10012−10018. https://doi.org/10.1021/acs.nanolett.1c03655

Enakieva Y.Y., Zhigileva E.A., Fitch A.N., Chernyshev V.V., Stenina I.A., Yaroslavtsev A.B., Sinelshchikova A.A., Kovalenko K.A., Gorbunova Y.G., Tsivadze A.Yu. Dalton Trans. 2021, 50, 6549-6560. https://doi.org/10.1039/D1DT00612F

Organic Nanophotonics (NATO Science Series II: Mathematics, Physics and Chemistry) (Charra F., Agranovich V.M., Kajzar F., Eds.), New York: Academic Publishers, Kluwer, 2004.

Multiporphyrin Arrays: Fundamentals and Applications (Kim D., Ed.), Singapore: Pan Stanford Publ. Pte. Ltd., 2012. 775 p.

Zenkevich E.I., von Borczyskowski C. Multiporphyrin Self-Assembled Arrays in Solutions and Films: Thermodynamics, Spectroscopy and Photochemistry. In: Handbook of Polyelectrolytes and Their Applications (Tripathy S.K., Kumar J., Nalwa H.S., Eds.) USA: American Scientific Publishers, 2002. Vol. 2, Ch. 11, pp. 301-348.

Fukuzumi S., Lee Y.M., Nam W. ChemPhotoChem. 2018, 2, 121 - 135. https://doi.org/10.1002/cptc.201700146

Hood D., Sahin T., Parkes-Loach P.S., Jiao J., Harris Michelle A., Dilbeck P., Niedzwiedzki D.M., Kirmaier C., Loach P.A., Bocian D.F., Lindsey J.S., Holten D. ChemPhotoChem. 2018, 2, 300 - 313. https://doi.org/10.1002/cptc.201700182

Wibmer L., Lourenco L.M.O., Roth A., Katsukis G., Neves M.G.P., Cavaleiro J.A.S., Tomé J.P.C., Torres T., Guldi D.M. Nanoscale 2015, 7, 5674-5682. https://doi.org/10.1039/C4NR05719H

Biswas K., Urbani M., Sánchez-Grande A., Soler-Polo D., Lauwaet K., Matěj A., Mutombo P., Veis L., Brabec J., Pernal K., Gallego J.M., Miranda R., Écija D., Jelinek P., Torres T., Urgel J.I. J. Am. Chem. Soc. 2022, 144, 12725-12731. https://doi.org/10.1021/jacs.2c02700

Torres T., Bottari G. Organic Nanomaterials: Synthesis, Characterization, and Device Applications. John Wiley & Sons, 2013. 632 p. https://doi.org/10.1002/9781118354377

Jing H., Rong J., Taniguchi M., Lindsey J.S. Coord. Chem. Rev. 2022, 456, 214278. https://doi.org/10.1016/j.ccr.2021.214278

Roy P.P., Kundu S., Valdiviezo J., Bullard G., Fletcher J.T., Liu R., Yang S.J., Zhang P., Beratan D.N., Therien M.J., Makri N., Fleming G.R. J. Am. Chem. Soc. 2022, 144, 6298-6310. https://doi.org/10.1021/jacs.1c12889

Cook L.P., Brewer G., Wong-Ng W. Crystals 2017, 7, 223-245. https://doi.org/10.3390/cryst7070223

Hirao T., Haino T. J. Porphyrins Phthalocyanines 2023, 27, 966-979. https://doi.org/10.1142/S1088424623300082

Zvyagina A.I., Aleksandrov A.E., Martynov A.G., Kalinina M.A. Inorg. Chem. 2021, 60, 15509-15518. https://doi.org/10.1021/acs.inorgchem.1c02147

Francesca S., Wennink J.W.H., Mäkinen P.I., Holappa L.P., Trohopoulus P.N., Ylä-Herttuala S., van Nostrum C., de la Escosura A., Torres T. J. Mater. Chem. B. 2020, 8, 282-289. https://doi.org/10.1039/C9TB02014D

Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T. , Ch. von Borczyskowski, Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k

He H., Lee S., Liu N., Zhang X., Wang Y., Lynch V.M., Kim D., Sessler J.L., Ke X.-S J. Am. Chem. Soc. 2023, 145, 5, 3047–3054. https://doi.org/10.1021/jacs.2c11788

Koifman O.I., Ageeva T.A., Kuzmina N.S., Otvagin V.F., Nyuchev A.V., Fedorov A.Yu., Belykh D.V., Lebedeva N.Sh., Yurina E.S., Syrbu S.A., Koifman M.O., Gubarev Y.A., Bunin D.A., Gorbunova Yu.G., Martynov A.G., Tsivadze A.Yu., Dudkin S.V., Lyubimtsev A.V., Maiorova L.A., Kishalova M.V., Petrova M.V., Sheinin V.B., Tyurin V.S., Zamilatskov I.A., Zenkevich E.I., Morshnev P.K., Berezin D.B., Drondel E.A., Kustov A.V., Pogorilyy V.A., Noev A.N., Eshtukova-Shcheglova E.A., Plotnikova E.A., Plyutinskaya A.D., Morozova N.B., Pankratov A.A., Grin M.A., Abramova O.B., Kozlovtseva E.A., Drozhzhina V.V., Filonenko E.V., Kaprin A.D., Ryabova A.V., Pominova D.V., Romanishkin I.D., Makarov V.I., Loschenov V.B., Zhdanova K.A., Ivantsova A.V., Bortnevskaya Yu.S., Bragina N.A., Solovieva A.B., Kuryanova A.S., Timashev P.S. Macroheterocycles 2022, 15, 207-302. https://doi.org/10.6060/mhc224870k

Matern J., Maisuls I., Strassert C.A., Fernández G. Angew. Chem., Int. Ed. 2022, 61, e2022084. https://doi.org/10.1002/anie.202203783

Yang F., Dong J., Li Z., Wang Z. ACS Nano 2023, 17, 4102-4133. https://doi.org/10.1021/acsnano.2c10251

Ogawa T., Sinha N., Pfund B., Prescimone A., Wenger O.S. J. Am. Chem. Soc. 2022, 144, 21948-21960. https://doi.org/10.1021/jacs.2c08838

Ho-Yeung Chan M., Wing-Wah Yam V. J. Am. Chem. Soc. 2022, 144, 22805−22825. https://doi.org/10.1021/jacs.2c08551

Faraonov M., Martynov A.G., Polovkova M.A., Khasanov S.S., Gorbunova Yu.G., Tsivadze A.Yu., Otsuka A., Yamochi H., Kitagawa H., Konarev D.V. Magnetochemistry 2023, 9, 36. https://doi.org/10.3390/magnetochemistry9020036

Martynov A.G., Polovkova M.A., Gorbunova Yu.G., Tsivadze A.Yu. Molecules 2022, 27, 6498. https://doi.org/10.3390/molecules27196498

Efros A.L., Brus L.E. ACS Nano 2021, 15, 6192−6210. https://doi.org/10.1021/acsnano.1c01399

Kovalenko M.V., Manna L., Cabot A., Hens Z., Talapin D.V., Kagan C.R., Klimov V.I., Rogach A.L., Reiss P., Milliron D.J., Guyot-Sionnnest P., Konstantatos G., Parak W.J., Hyeon T., Korgel B.A., Murray C.B., Heiss W. ACS Nano 2015, 9, 1012-1057. https://doi.org/10.1021/nn506223h

von Borczyskowski C., Zenkevich E. Tuning Semiconduting and Metallic Quantum Dots: Spectroscopy and Dynamics. Pan Stanford Publishing Pte. Ltd, 2017. 398 p. https://doi.org/10.1201/9781315364636

Wu N., Kirkwood N., Saker Neto N., Pervin R., Mulvaney P., Wong W.W.H. J. Phys. Chem. C 2023, 127, 2116–2126. https://doi.org/10.1021/acs.jpcc.3c00053

Cadena D.M., Sowa J.K., Cotton D.E., Wight C.D., Hoffman C.L., Wagner H.R., Boette J.T., Raulerson E.K., Iverson B.L., Rossky P.J., Roberts S.T. J. Am. Chem. Soc. 2022, 144, 22676−22688. https://doi.org/10.1021/jacs.2c09758

Zenkevich E.I., von Borczyskowski C. Formation Principles and Excited States Relaxation in Self-Assembled Complexes: Multiporphyrin Arrays and "Semiconductor CdSe/ZnS Quantum Dot-Porphyrin" Nanocomposites. In: Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Vol. 22 - Biophysical and Physicochemical Studies of Tetrapyrroles (Kadish K., Smith K.M., Guilard R, Eds.), Singapore: World Scientific Publishing Co. Pte. Ltd, 2012, 67-168. https://doi.org/10.1142/9789814397605_0006

Zenkevich E.I., Sagun E.I., Knyukshto V.N., Stasheuski A.S., Galievsky V.A., Stupak A.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. C 2011, 115, 21535-21545. https://doi.org/10.1021/jp203987r

Sewid F.A., Annas K.I., Dubavik A., Veniaminov A.V., Maslov V.G., Orlova A.O. RSC Adv. 2022, 12, 899-906. https://doi.org/10.1039/D1RA08148A

Rybkin A.Y., Belik A.Y., Goryachev N.S., Mikhaylov P.A., Kraevaya O.A., Filatova N.V., Parkhomenko I.I., Peregudov A.S., Terent'ev A.A., Larkina E.A., Mironov A.F., Troshin P.A., Kotelnikov A.I. Dyes Pigm. 2020, 180, 108411. https://doi.org/10.1016/j.dyepig.2020.108411

Zenkevich E., Blaudeck T., Sheinin V., Kulikova O., Selyshchev O., Dzhagan V., Koifman O., von Borczyskowski C., Zahn D.R.T. J. Mol. Struct. 2021, 1244, 131239. https://doi.org/10.1016/j.molstruc.2021.131239

Yu X.T., Sui S.Y., He Y.X., Yu C.H., Peng Q. Biomater. Adv. 2022, 135, 212725. https://doi.org/10.1016/j.bioadv.2022.212725

Martyanov T.P., Tovstun S.A., Vasil'ev S.G., Martyanova E.G., Spirin M.G., Kozlov A.V., Klimenko L.S., Brichkin S.B., Razumov V.F. J. Nanopart. Res. 2022, 24, 129. https://doi.org/10.1007/s11051-022-05513-4

Zenkevich E., Shulga A., Cichos F., Petrov E.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. B 2005, 109, 8679-8692. https://doi.org/10.1021/jp040595a

Dayal S., Lou Y., Samis A.C.S., Berlin J.C., Kenney M.E., Burda C. J. Am. Chem. Soc. 2006, 128, 13974-13975. https://doi.org/10.1021/ja063415e

Martynenko I.V., Orlova A.O., Maslov V.G., Baranov A.V., Fedorov A.V., Artemyev M. Beilstein J. Nanotechnol. 2013, 4, 895-902. https://doi.org/10.3762/bjnano.4.101

Stupak A., Blaudeck T., Zenkevich E., Krause S., von Borczyskowski C. Phys. Chem. Chem. Phys. 2018, 20, 18579-18600. https://doi.org/10.1039/C8CP02846J

Shu Y.F., Lin X., Qin H.Y, Hu Z., Jin Y.Z., Peng X.G. Angew. Chem. Int. Ed. 2020, 59, 22312-22323. https://doi.org/10.1002/anie.202004857

Kaushik P. Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications, 1st Edition, USA: Jenny Stanford Publishing, 2019.

Kundu S., Patra A. Chem. Rev. 2017, 117, 712-757. https://doi.org/10.1021/acs.chemrev.6b00036

Calvin J., O'Brien E.A., Sedlak A.B., Balan A.D., Alivisatos A.P. ACS Nano 2021, 15, 1407-1420. https://doi.org/10.1021/acsnano.0c08683

Saniepay M., Mi C., Liu Z., Abel E.P., Beaulac R. J. Am. Chem. Soc. 2018, 140, 1725−1736. https://doi.org/10.1021/jacs.7b10649

Chen Y., Smock S.R., Flintgruber A.H., Perras F.A., Brutchey R.L., Rossini A.J. J. Am. Chem. Soc. 2020, 142, 6117−6127. https://doi.org/10.1021/jacs.9b13396

Piveteau L., Morad V., Kovalenko M.V. J. Am. Chem. Soc. 2020, 142, 19413−19437. https://doi.org/10.1021/jacs.0c07338

Buckley J.J., Greaney M.J., Brutchey R.L. Chem. Mater. 2014, 26, 6311−6317. https://doi.org/10.1021/cm503324k

Shen Y., Tan R., Gee M.Y., Greytak A.B. ACS Nano 2015, 9, 3345−3359. https://doi.org/10.1021/acsnano.5b00671

Lee B., Littrell K., Sha Y., Shevchenko E.V. J. Am. Chem. Soc. 2019, 141, 16651−16662. https://doi.org/10.1021/jacs.9b06010

Kilin D.S., Tsemekham K., Zenkevich E.I., Prezhdo O.V., von Borczyskowski C. J. Photochem. Photobiol. A 2007, 190, 342-351. https://doi.org/10.1016/j.jphotochem.2007.02.017

Liu J., Kilina S., Tretiak S., Prezhdo O.V. ACS Nano 2015, 9, 9106-9116. https://doi.org/10.1021/acsnano.5b03255

Kilina S.V., Tamukong P.K., Kilin D.S. Acc. Chem. Res. 2016, 49, 2127−2135. https://doi.org/10.1021/acs.accounts.6b00196

Hartley C.L., Kessler M.L., Dempsey J.L. J. Am. Chem. Soc. 2021, 143, 1251-1266. https://doi.org/10.1021/jacs.0c10658

Du Fossé I., Lal S., Hossaini A.N., Infante I., Houtepen A.J. J. Phys. Chem. C 2021, 125, 23968−23975. https://doi.org/10.1021/acs.jpcc.1c07464

Zito J., Infante I. Acc. Chem. Res. 2021, 54, 1555−1564. https://doi.org/10.1021/acs.accounts.0c00765

Selyshchev O., Dzhagan V., Zenkevich E., Stroyuk O., Raievska O., Sheinin V., Kulikova O., Koifman O., Zahn D.R.T. Electronic interaction between Ag-In-S, Ag-In-S/ZnS quantum dots and quaternary amine aromatic molecules - a photoluminescence quenching study. In: Book of Abstracts of the 14th Int. Symp. on Functional π-Electron Systems, Fπ14, June 2-7, Berlin, 2019, p. 106.

Sheinin V., Kulikova O., Zenkevich E., Selyshchev O., Dzhagan V., Stroyuk O., Raievska O., Koifman O., Zahn D.R.T. Tetra(N-methyl-4-pyridyl)porphyrin sonde report on the surface of AIS/ZnS/GSH quantum dots in water. In: Book of Abstracts of the 1st Int. Conf. on Noncovalent Interactions, ICNI-2019, 2-6 September, Lisbon, Portugal, 2019, p. 82.

Zenkevich E., Sheinin V., Kulikova O., Selyshchev O., Dzhagan V., Stroyuk O., Raievska O., Koifman O., von Borczyskowski C., Zahn D.R.T. Self-assembled nanocomposites based on semiconductor quantum dots and porphyrin molecules: interface chemistry, optical properties and energy relaxation processes. In: Book of Abstracts of Webinar on Materials Science and Nanotechnology. Coalesce Research Group, 33 Market Point Dr., Greenwille SC 29607, USA, July 29-30, 2020, p. 11.

Motevich I.G., Zenkevich E.I., Stroyuk O.L., Raievska O.E., Kulikova О.М., Sheinin V.B., Koifman O.I., Zahn D.R.T., Strekal N.D. J. Appl. Spectrosc. 2020, 87, 926-935. https://doi.org/10.1007/s10812-021-01109-3

Zenkevich E., Sheinin V., Kulikova O., Koifman O. Mathematical Methods in Technologies and Technique 2022, No. 11, 11-15. https://doi.org/10.52348/2712-8873_MMTT_2022_11_15

Zenkevich E., Sheinin V., Kulikova O., Koifman O.. J. Porphyrins Phthalocyanines 2023, 27, 19. https://doi.org/10.1142/S1088424623500323

Zenkevich E., Sheinin V., Kulikova O., Koifman O. J. Appl. Spectrosc. 2023, 90, 18.

[transl. Zhurnal Prikladnoi Spektroskopii 2023, 90(3), 434–446]. https://doi.org/10.1007/s10812-023-01566-y

Sugata S., Yamanouchi S., Matsushima Y. Chem. Pharm. Bull. 1977, 25, 884-889. https://doi.org/10.1248/cpb.25.884

Herrmann O., Mehdi S.H., Corsini A. Can. J. Chem. 1978, 56, 1084-1087. https://doi.org/10.1139/v78-184

Adler A.D., Longo F.R., Finarelli J.D., Goldmacher J., Assour J., Korsakoff L. J. Organ. Chem. 1967, 32, 476-476. https://doi.org/10.1021/jo01288a053

Hambright P., Gore T., Burton M. Inorg. Chem. I976, 15, 2314-2315. https://doi.org/10.1021/ic50163a072

Sheinin V.B., Ivanov D.A., Koifman O.I. Macroheterocycles 2017, 10, 487-495. https://doi.org/10.6060/mhc170833s

Bailey S.L., Hambright P. Inorg. React. Mech. 2001, 3, 51-62. https://doi.org/10.1515/irm-2001-0106

Raevskaya A., Lesnyak V., Haubold D., Dzhagan V., Stroyuk O., Gaponik N., Zahn D.R.T., Eychmüller A. J. Phys. Chem. C 2017, 121, 9032-9042. https://doi.org/10.1021/acs.jpcc.7b00849

Stroyuk O., Raevskaya A., Spranger F., Selyshchev O., Dzhagan V., Schulze S., Zahn D.R.T., Eychmüller A. J. Phys. Chem. C 2018, 122, 13648-13658. https://doi.org/10.1021/acs.jpcc.8b00106

Stroyuk O., Weigert F., Raevskaya A., Spranger F., Würth C., Resch-Genger U., Gaponik N., Zahn D.R.T. J. Phys. Chem. C 2019, 123, 2632-2641. https://doi.org/10.1021/acs.jpcc.8b11835

Sheinin V.B., Kulikova O.M., Lipatova I.M., Yusova A.A., Koifman O.I. Dyes Pigm. 2018, 155, 42-50. https://doi.org/10.1016/j.dyepig.2018.03.026

Sheinin V.B., Kulikova O.M., Koifman O.I. J. Mol. Liq. 2019, 277, 397-408. https://doi.org/10.1016/j.molliq.2018.12.105

Boles M.A., Ling D., Hyeon T., Talapin D.V. Nat. Mater. 2016, 15, 141−153. https://doi.org/10.1038/nmat4526

Ginterseder M., Franke D., Perkinson C.F., Wang L., Hansen E.C., Bawendi M.G. J. Am. Chem. Soc. 2020, 142, 4088−4092. https://doi.org/10.1021/jacs.9b12350

Giansante C. J. Phys. Chem. C 2018, 122, 18110−18116. https://doi.org/10.1021/acs.jpcc.8b05124

De Roo J., De Keukeleere K., Hens Z., Van Driessche I. Dalton Trans. 2016, 45, 13277−13283. https://doi.org/10.1039/C6DT02410F

du Fossé I, ten Brinck S., Infante I., Houtepen A.J. Chem. Mater. 2019, 31, 4575−4583. https://doi.org/10.1021/acs.chemmater.9b01395

Krause M.M., Kambhampati P. Phys. Chem. Chem. Phys. 2015, 17, 18882−18894. https://doi.org/10.1039/C5CP02173A

Duim H., Fang H.-H., Adjokatse S., ten Brink G.H., Marques M.A.L., Kooi B.J., Blake G.R., Botti S., Loi1 M.A. Appl. Phys. Rev. 2019, 6, 031401. https://doi.org/10.1063/1.5088342

Zeng B., Palui G., Zhang C., Zhan N., Wang W., Ji X., Chen B., Mattoussi H. Chem. Mater. 2018, 30, 225−238. https://doi.org/10.1021/acs.chemmater.7b04204

Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C., Bulovic V. ACS Nano 2014, 8, 5863-5872. https://doi.org/10.1021/nn500897c

Blaudeck T., Zenkevich E.I., Abdel-Mottaleb M., Szwaykowska K., Kowerko D., Cichos F., von Borczyskowski C. ChemPhysChem 2012, 13, 959 - 972. https://doi.org/10.1002/cphc.201100711

Zhong C., Sangwan V.K., Kang J., Luxa J., Sofer Z., Hersam M.C., Weiss E.A. J. Phys. Chem. Lett. 2019, 10, 493−499. https://doi.org/10.1021/acs.jpclett.8b03543

Lakowicz J. Principles of Fluorescence Spectroscopy. New York: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4

Bellamy L.J. The infra-red spectra of complex molecules (3rd ed.) London: Chapman and Hall Ltd, 1975. https://doi.org/10.1007/978-94-011-6017-9

Groenhof G. Introduction in QM/MM Simulations. In: Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology (Monticelli L., Salonen E., Eds.) New York: Springer Science+Business Media, 2013, 924, Ch. 3. https://doi.org/10.1007/978-1-62703-017-5_3

Hofer T.S., de Visser S.P. Front. Chem. 2018, 6, Article 367. https://doi.org/10.3389/fchem.2018.00357

Tachiya M. Chem. Phys. Lett. 1975, 33, 289-292. https://doi.org/10.1016/0009-2614(75)80158-8

Morris-Cohen A.J., Vasilenko V., Amin V.A., Reuter M.G., Weiss E.A. ACS Nano 2012, 6, 557-565. https://doi.org/10.1021/nn203950s

Beane G., Boldt K., Kirkwood N., Mulvaney P. J. Phys. Chem. C 2014, 118, 18079−18086.

https://doi.org/10.1021/jp502033d

Zenkevich E., Von Borczyskowski C. Structural and Energetic Dynamics in Quantum Dot-Dye Nanoassemblies. In: Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics (Zenkevich EI, von Borczyskowski C, Eds.) USA: Pan Stanford Publishing Pte. Ltd. 2016, Chapter 4, pp 1-148. https://doi.org/10.1201/9781315364544-2

Harris R.D., Bettis H.S., Kodaimati M., He C., Nepomnyashchii,A.B., Swenson N.K., Lian R., Calzada S., Weiss E.A. Chem. Rev. 2016, 116, 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102

Dworak L., Matylitzky V.V., Ren T., Basche T., Wachtveitl J. J. Phys. Chem. C 2014, 118, 4396-4402. https://doi.org/10.1021/jp409807x

Zenkevich E., Stupak A., Göhler C., Krasselt C., von Borczyskowski C. ACS Nano 2015, 9, 2886-2903. https://doi.org/10.1021/nn506941c

Zenkevich E.I., von Borczyskowski C. Photoinduced Relaxation Processes in Self-Assembled Nanostructures: Multiporphyrin Complexes and Composites "Cdsе/Zns Quantum Dot-Porphyrin". In: Multiporphyrin Arrays: Fundamentals and Applications (Kim D., Ed.) Singapore: Pan Stanford Publishing Pte. Ltd. 2012. Ch. 5, pp. 217-288. https://doi.org/10.1201/b11621-6

Sagun E.I., Zenkevich E.I., Knyukshto V.N., Shulga A.M., Starukhin D.A., von Borczyskowski C. Chem. Phys. 2002, 275, 211-237. https://doi.org/10.1016/S0301-0104(01)00517-1

Knyukshto V.N., Sagun, E.I., Shulga A.M., Zenkevich, E.I. J. Appl. Spectrosc. 1998, 65, 900-907. https://doi.org/10.1007/BF02675636

Zenkevich E.I., Chernook A.V., Shulga A.M., Sagun E.I., Gurinovich G.P. Khimicheskaya Fizika 1989, 8, 891-901.

Marcus R.A. Rev. Modern Phys. 1993, 65, 599-610. https://doi.org/10.1103/RevModPhys.65.599

Uno T., Koga M., Sotome H., Miyasaka H., Tamai N., Kobayashi Y. J. Phys. Chem. Lett. 2018, 9, 7098−7104. https://doi.org/10.1021/acs.jpclett.8b03106

Irgen-Gioro S., Yang M., Padgaonkar S., Chang W.J., Zhang Z., Nagasing B., Jiang Y., Weiss E.A. Phys. Rev. 2020, 1, 011305. https://doi.org/10.1063/5.0033263

Förster T. Modern Quantum Chemistry; Sinanoglu, O. Ed.; Academic Press: New York, 1965.

Agranovich V.M., Galanin M.D. Electronic Excitation Energy Transfer in Condensed Matter. Amsterdam, New York: North-Holland Pub. Co. 1982.

Clapp A.R., Medintz I.L., Uyeda H., Brent T., Fisher R., Goldman E.R., Bawendi M.G., Mattoussi H. J. Am. Chem. Soc. 2005, 127, 18212-18221. https://doi.org/10.1021/ja054630i

Gerlach F., Täuber D., von Borczyskowski C. Chem. Phys. Lett. 2013, 572, 90-95. https://doi.org/10.1016/j.cplett.2013.04.034

Franceschetti A., Zunger A., Scholes G.D. J. Phys. Chem. C 2008, 112, 13336−13341. https://doi.org/10.1021/jp805682m

Ray A., Bauri A., Bhattacharya S. J. Mol. Liq. 2018, 263, 64-71. https://doi.org/10.1016/j.molliq.2018.04.035

Hadar I., Halivni S., Even-Dar N., Faust A., Banin U. J. Phys. Chem. C 2015, 119, 3849−3856. https://doi.org/10.1021/jp512678j

Funston A.M., Jasieniak J.J., Mulvaney P. Adv. Mater. 2008, 20, 4274-4280. https://doi.org/10.1002/adma.200703186

Padgaonkar S., Brown P.T., Jeong Y., Cherqui C., Avanaki K.N., López-Arteaga R., Irgen-Gioro S., Wu Y., Sangwan V.K., Schatz G.C., Hersam M.C., Weiss E.A. J. Phys. Chem. C 2021, 125, 15458−15464. https://doi.org/10.1021/acs.jpcc.1c04562

Basko D., La Rocca J.C., Bassani F., Agranovich V.M. Eur. Phys. J. B 1999, 8, 353-362. https://doi.org/10.1007/s100510050700

Dmitriev O.P. Chem. Rev. 2022, 122, 8487-8593. https://doi.org/10.1021/acs.chemrev.1c00648

Atkins P., de Paula J. Atkin's Physical Chemistry. Oxford: Oxford University Press, 2002. p. 577.

Blaudeck T., Zenkevich E., Cichos F., von Borczyskowski C. J. Phys. Chem. C 2008, 112, 20251-20257. https://doi.org/10.1021/jp8074817

Kowalik P., Bujak P., Penkala M., Maroń A.M., Ostrowski A., Kmita A., Gajewska M., Lisowski W., Sobczak J.W., Pron A. Chem. Mater. 2022, 34, 809-825. https://doi.org/10.1021/acs.chemmater.1c03800

Опубликован
2023-10-18
Как цитировать
Zenkevich, E., Sheinin, V., Kulikova, O., & Koifman, O. (2023). Surface Properties, Interface Events and Energy Relaxation Processes in Nanoassemblies Based on Ag-In-S/ZnS Quantum Dots and Porphyrins. Макрогетероциклы/Macroheterocycles, 16(3), 189-203. https://doi.org/10.6060/mhc235102z
Раздел
Порфирины