Molecular and Electronic Structure, and Electrochemical Study of Oxometal(IV) Tetrabenzoporphyrins, [TBPM] (M = VO, TiO)

  • Daniil N. Finogenov Ивановский Государственный Химико-технологический университет
  • Andrey I. Koptyaev Институт физики микроструктур Российской академии наук
  • Alexey V. Eroshin Ивановский государственный химико-технологический университет
  • Alina S. Kopylova Ивановский государственный химико-технологический университет
  • Artem A. Nabasov Ивановский государственный химико-технологический университет
  • Nikolay E. Galanin Ивановский государственный химико-технологический университет
  • Yuriy A. Zhabanov Ивановский государственный химико-технологический университет
  • Pavel A. Stuzhin
Ключевые слова: тетрабензопорфирин, циклическая вольтамперометрия, sTDDFT, электронные спектры

Аннотация

Complexes of tetrabenzoporphyrin (TBP) with vanadyl and titanyl were prepared by complexation directly from metal free H2TBP. They were characterized using spectral and electrochemical methods and peculiarities of their molecular and electronic structure were investigated by DFT calculations. Properties of MTBP complexes were compared with corresponding complexes of meso- and b-substituted porphyrins, porphyrazines and phthalocyanines. It is shown that fusion of benzene rings strongly facilitates the oxidation process which occurs at +0.3 V, what is much easier than in the case of the corresponding porphyrins (by 0.4 - 0.5 V) and phthalocyanines (by 0.5-0.7 V). At the same time the reduction of tetrabenzoporhyrin complexes is observed at similar potentials as in the case of meso-aryl and b-alkyl substituted porphyrins (0.9-1.2 V), and by 0.4-0.6 V more difficult than in the case of phthalocyanine complexes. The obtained data evidence that VO and TiO complexes of tetrabenzoporphyrins can be used as donors in organic electronics.

Литература

Tamura Y., Saeki H., Hashizume J., Okazaki Y., Kuzuhara D., Suzuki M., Yamada H. Chem. Commun. 2014, 50, 10379-10381. https://doi.org/10.1039/C4CC03801K

Guide M., Dang X.D., Nguyen T.Q. Adv. Mater. 2011 23, 2313-2319. https://doi.org/10.1002/adma.201003644

Shea P.B., Kanicki J., Ono N. J. Appl. Phys. 2005, 98, 014503. https://doi.org/10.1063/1.1949713

Aramaki S., Sakai Y., Ono N. Appl. Phys. Lett. 2004, 84, 2085-2087. https://doi.org/10.1063/1.1666994

Shea P.B., Kanicki J., Pattison L.R., Petroff P., Kawano M., Yamada H., Ono N. J. Appl. Phys. 2006, 100, 034502. https://doi.org/10.1063/1.2220641

Finikova O., Galkin A., Rozhkov V., Cordero M., Hägerhäll C., Vinogradov S. J. Am. Chem. Soc. 2003, 125, 4882-4893. https://doi.org/10.1021/ja0341687

Rietveld I.B., Kim E., Vinogradov S.A. Tetrahedron 2003, 59, 3821-3831. https://doi.org/10.1016/S0040-4020(03)00432-0

Carvalho C.M.B., Brocksom T.J., de Oliveira K.T. Chem. Soc. Rev. 2013, 42, 3302-3317. https://doi.org/10.1039/c3cs35500d

Gouterman M., Wagnière G.H., Snyder L.C. J. Mol. Spectrosc. 1963, 11, 108-127. https://doi.org/10.1016/0022-2852(63)90011-0

Lee L.K., Sabelli N.H., LeBreton P.R. J. Phys. Chem. 1982, 86, 3926-3931. https://doi.org/10.1021/j100217a009

Nguyen K.A., Pachter R. J. Chem. Phys. 2001, 114, 10757-10767. https://doi.org/10.1063/1.1370064

Theisen R.F., Huang L., Fleetham T., Adams J.B., Li J. J. Chem. Phys. 2015, 142, 094310. https://doi.org/10.1063/1.4913757

Stuzhin P.A., Khelevina O.G. Coord. Chem. Rev. 1996, 147, 41-86. https://doi.org/10.1016/0010-8545(94)01126-5

Ye L., Fang Y., Ou Z., Wang L., Xue S., Sun J., Kadish K.M. J. Porphyrins Phthalocyanines 2018, 22, 1129-1142. https://doi.org/10.1142/S1088424618501067

Chen P., Finikova O.S., Ou Z., Vinogradov S.A., Kadish K.M. Inorg. Chem. 2012, 51, 6200-6210. https://doi.org/10.1021/ic3003367

Edwards L., Gouterman M., Rose C.B. J. Am. Chem. Soc. 1976, 98, 7638-7641. https://doi.org/10.1021/ja00440a031

Koptyaev A.I., Galanin N.E., Travkin V.V., Pakhomov G.L. Dyes Pigm. 2021, 186, 108984. https://doi.org/10.1016/j.dyepig.2020.108984

Lebedev A.Y., Filatov M.A., Cheprakov A.V., Vinogradov S.A. J. Phys. Chem. A 2008, 112, 7723-7733. https://doi.org/10.1021/jp8043626

Bredas J.L. Materials Horizons 2014, 1(1), 17-19. https://doi.org/10.1039/C3MH00098B

Ito S., Ito T., Makihata D., Ishii Y., Saito Y., Oba T. Tetrahedron Lett. 2014, 55, 4390-4394. https://doi.org/10.1016/j.tetlet.2014.06.039

Yanai T., Tew D.P., Handy N.C. Chem. Phys. Lett. 2004, 393, 51-57. https://doi.org/10.1016/j.cplett.2004.06.011

Weigend F., Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. https://doi.org/10.1039/b508541a

Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., & Windus T.L. J. Chem. Inf. Model. 2007, 47, 1045-1052. https://doi.org/10.1021/ci600510j

Feller D. J. Comput. Chem. 1996, 17, 1571-1586. https://doi.org/10.1002/jcc.9

Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. J. Chem. Inf. Model. 2019, 59, 4814-4820. https://doi.org/10.1021/acs.jcim.9b00725

Bannwarth C., Grimme S. Comput. Theor. Chem. 2014, 1040-1041, 45-53. https://doi.org/10.1016/j.comptc.2014.02.023

Martynov A.G., Mack J., May A.K., Nyokong T., Gorbunova Y.G., Tsivadze A.Y. ACS Omega 2019, 4, 7265-7284. https://doi.org/10.1021/acsomega.8b03500

Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78. https://doi.org/10.1002/wcms.81

Neese F. WIREs Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606

Neese F., Wennmohs F.; Chem. Phys. 2009, 356, 98-109. https://doi.org/10.1016/j.chemphys.2008.10.036

Marenich A.V., Cramer C.J., Truhlar D.G. J. Phys. Chem. B 2009, 113, 6378-6396. https://doi.org/10.1021/jp810292n

Reddy D., Chandrashekar T.K. Polyhedron 1993, 12, 627-633. https://doi.org/10.1016/S0277-5387(00)84979-7

Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. Int. J. Mol. Sci. 2022, 23, 939. https://doi.org/10.3390/ijms23020939

Eroshin A.V., Koptyaev A.I., Otlyotov A.A., Minenkov Y., Zhabanov Y.A. Int. J. Mol. Sci. 2023, 24, 7070. https://doi.org/10.3390/ijms24087070

Otlyotov A.A., Ryzhov I.V., Kuzmin I.A., Zhabanov Y.A., Mikhailov M.S., Stuzhin P.A. Int. J. Mol. Sci. 2020, 21, 2923. https://doi.org/10.3390/ijms21082923

Zhabanov Y.A., Ryzhov I.V., Kuzmin I.A., Eroshin A.V., Stuzhin P.A. Molecules 2020, 26, 113. https://doi.org/10.3390/molecules26010113

Ryzhov I.V., Eroshin A.V., Zhabanov Y.A., Finogenov D.N., Stuzhin P.A. Int. J. Mol. Sci. 2022, 23, 5379. https://doi.org/10.3390/ijms23105379

Tverdova N.V., Girichev G.V., Krasnov A.V., Pimenov O.A., Koifman O.I. Struct. Chem. 2013, 24, 883-890. https://doi.org/10.1007/s11224-013-0259-4

Pakhomov G.L., Koptyaev A.I., Yunin P.A., Somov N.V., Semeikin A.S., Rychikhina E.D., Stuzhin P.A. ChemistrySelect. 2023, 8, e202303271. https://doi.org/10.1002/slct.202303271

Zakharov A.V., Girichev G.V. J. Mol. Struct.: THEOCHEM 2008, 851, 183-196. https://doi.org/10.1016/j.theochem.2007.11.008

Shannon R.D. Acta Cryst. 1976, A32, 751-767. https://doi.org/10.1107/S0567739476001551

Stillman M., Mack J., Kobayashi N. J. Porphyrins Phthalocyanines 2002, 6, 296-300. https://doi.org/10.1142/S108842460200035X

Fang Y., Kadish K.M., Chen P., Gorbunova Y., Enakieva Y., Tsivadze A., Guilard R. J. Porphyrins Phthalocyanines 2013, 17, 1035-1045. https://doi.org/10.1142/S1088424613500958

Kadish K.M., Morrison M.M. J. Am. Chem. Soc. 1976, 98, 3326-3328. https://doi.org/10.1021/ja00427a046

Spyroulias G.A., Despotopoulos A.P., Raptopoulou C.P., Terzis A., de Montauzon D., Poilblanc R., Coutsolelos A.G. Inorg. Chem. 2002, 41, 2648 - 2659. https://doi.org/10.1021/ic000738h

Kadish K.M., Morrison M.M. Bioinorg. Chem. 1977, 7, 107-115. https://doi.org/10.1016/S0006-3061(00)80061-7

Furhop J.H., Kadish K.M., Davis D.G. J. Am. Chem. Soc. 1973, 95, 5140-5147. https://doi.org/10.1021/ja00797a008

Mchiri C., Amiri N., Jabli S., Roisnel T., Nasri H. J. Mol. Struct. 2018, 1154, 51-58. https://doi.org/10.1016/j.molstruc.2017.10.032

Kobayashi N., Koshiyama M., Osa T. Inorg. Chem. 1985, 24, 2502-2508. https://doi.org/10.1021/ic00210a009

Clack D.W., Hush N.S., Woolsey I.S. Inorg. Chim. Acta 1976, 19, 129-132. https://doi.org/10.1016/S0020-1693(00)91084-3

Lever A.B.P., Licoccia S., Magnell K., Minor P.C., Ramaswamy B.S. Advances in Chemistry 1982, 201, 237-252. https://doi.org/10.1021/ba-1982-0201.ch011

Опубликован
2024-05-15
Как цитировать
Finogenov, D., Koptyaev, A., Eroshin, A., Kopylova, A., Nabasov, A., Galanin, N., Zhabanov, Y., & Stuzhin, P. (2024). Molecular and Electronic Structure, and Electrochemical Study of Oxometal(IV) Tetrabenzoporphyrins, [TBPM] (M = VO, TiO). Макрогетероциклы/Macroheterocycles, 17(1), 22-28. https://doi.org/10.6060/mhc235153f
Раздел
Порфирины