Interaction of Monoheteryl Substituted Cationic Porphyrins with Synthetic Nucleic Acids
Abstract
The complex formation of monoheteryl-substituted tricationic porphyrins with representative polynucleotides (poly[d(GC)2] and poly[d(AT)2]) was studied. It has been spectrally established that the studied porphyrins form intercalation complexes of different geometry with poly[d(GC)2]: 1) intercalation between the nitrogenous bases of the porphyrin macroring; 2) intercalation between the nitrogenous bases of the monoheteryl substituent. The studied porphyrins form complexes with the poly[d(AT)2] groove. The DSC method was used to analyse the temperature dependences of the specific heat capacities of solutions of the initial reagents and complexes of porphyrins with poly[d(GC)2] and poly[d(AT)2]; it was found that the proportion of structural changes in the analysed solution associated with intercalation significantly exceeds the similar value during the formation of the complex in the groove of the nucleic acid. The results obtained demonstrate a new potential opportunity to increase the selectivity of binding of ligands to nucleic acids.
References
Bray F., Jemal A., Grey N., Ferlay J., Forman D. Lancet Oncol. 2012, 13, 790. https://doi.org/10.1016/S1470-2045(12)70211-5
Khattab M., Al‐Karmalawy A.A. Front. Chem. 2021, 9, 628398. https://doi.org/10.3389/fchem.2021.628398
Eldehna W.M., Abo-Ashour M.F., Nocentini A., Gratteri P., Eissa I.H., Fares M., Ismael O.E., Ghabbour H.A., Elaasser M.M., Abdel-Aziz H.A. Eur. J. Med. Chem. 2017, 139, 250. https://doi.org/10.1016/j.ejmech.2017.07.073
Cheung-Ong K., Giaever G., Nislow C. Chem. Biol. 2013, 20, 648. https://doi.org/10.1016/j.chembiol.2013.04.007
Bhaduri S., Ranjan N., Arya D.P. Beilstein J. Org. Chem. 2018, 14, 1051. https://doi.org/10.3762/bjoc.14.93
Ferguson L.R., Denny W.A. Mutat. Res.-Fund. Mol. M. 2007, 623, 14. https://doi.org/10.1016/j.mrfmmm.2007.03.014
Lebedeva N.S., Yurina E.S., Gubarev Y.A., Syrbu S.A. Spectrochim. Acta, A 2018, 199, 235. https://doi.org/10.1016/j.saa.2018.03.066
Lebedeva N.S., Yurina E.S., Gubarev Y.A. Spectrochim. Acta, A 2019, 215, 153. https://doi.org/10.1016/j.saa.2019.02.047
Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macrohetero-cyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k
Koifman O.I., Ageeva T.A., Kuzmina N.S., Otvagin V.F., Nyuchev A.V., Fedorov A.Yu., Belykh D.V., Lebedeva N.Sh., Yurina E.S., Syrbu S.A., Koifman M.O., Gubarev Y.A., Bunin D.A., Gorbunova Yu.G., Martynov A.G., Tsivadze A.Yu., Dudkin S.V., Lyubimtsev A.V., Maiorova L.A., Kishalova M.V., Petrova M.V., Sheinin V.B., Tyurin V.S., Zamilatskov I.A., Zenkevich E.I., Morshnev P.K., Berezin D.B., Drondel E.A., Kustov A.V., Pogorilyy V.A., Noev A.N., Eshtukova-Shcheglova E.A., Plotnikova E.A., Plyutinskaya A.D., Morozova N.B., Pankratov A.A., Grin M.A., Abramova O.B., Kozlovtseva E.A., Drozhzhina V.V., Filonenko E.V., Kaprin A.D., Ryabova A.V., Pominova D.V., Romanishkin I.D., Makarov V.I., Loschenov V.B., Zhdanova K.A., Ivantsova A.V., Bortnevskaya Yu.S., Bragina N.A., Solovieva A.B., Kuryanova A.S., Timashev P.S. Macroheterocycles 2022, 15, 207-302. https://doi.org/10.6060/mhc224870k
Lebedeva N., Yurina E., Lebedev M., Kiselev A., Syrbu S., Gubarev Y. Macroheterocycles 2021, 14, 342. https://doi.org/10.6060/mhc214031g
Gubarev Y.A., Lebedeva N.S., Yurina E.S., Syrbu S.A., Kiselev A.N., Lebedev M.A. J. Pharm. Anal. 2021, 11, 691-698. https://doi.org/10.1016/j.jpha.2021.08.003
Peacocke A., Skerrett J.H. Trans. Faraday Soc. 1956, 52, 261. https://doi.org/10.1039/tf9565200261
Lipscomb L.A., Zhou F.X., Presnell S.R., Woo R.J., Peek M.E., Plaskon R.R., Williams L.D. Biochemistry 1996, 35, 2818. Song H., Kaiser J.T., Barton J.K. Nat. Chem. 2012, 4, 615. https://doi.org/10.1021/bi952443z
Song H., Kaiser J.T., Barton J.K. Nat. Chem. 2012, 4, 615. https://doi.org/10.1038/nchem.1375
He X., Zhou Y., Wang L., Li T., Zhang M., Shen T. Dyes Pigm. 1998, 39, 173. https://doi.org/10.1016/S0143-7208(98)00007-2
Kelly J.M., Murphy M.J., McConnell D.J., OhUigin C. Nucleic Acids Res. 1985, 13, 167. https://doi.org/10.1093/nar/13.17.6017
Chirvony V.S., Galievsky V.A., Kruk N.N., Dzhagarov B.M., Turpin P.-Y. J. Photochem. Photobiol. B: Biol. 1997, 40, 154. https://doi.org/10.1016/S1011-1344(97)00043-2
Shen Y., Myslinski P., Treszczanowicz T., Liu Y., Koningstein J. J. Phys. Chem. 1992, 96, 7782. https://doi.org/10.1021/j100198a052
Keane P.M., Kelly J.M. Coord. Chem. Rev. 2018, 364, 137. https://doi.org/10.1016/j.ccr.2018.02.018
Maleev V., Semenov M., Kruglova E., Bolbuk T., Gasan A., Bereznyak E., Shestopalova A. J. Mol. Struct., 2003, 645(2-3), 145. https://doi.org/10.1016/S0022-2860(02)00541-0
Drew H.R., Dickerson R.E. J. Mol. Biol. 1981, 151, 535. https://doi.org/10.1016/0022-2836(81)90009-7
Banerjee D., Pal S.K. J. Phys. Chem. B 2007, 111, 10833. https://doi.org/10.1021/jp074697n
Vega M.C., García Sáez I., Aymamí J., Eritja R., Van Der Marel G.A., van Boom J.H., Rich A., Coll M. Eur. J. Biochem. 1994, 222, 721. https://doi.org/10.1111/j.1432-1033.1994.tb18917.x
