Interaction of Monoheteryl Substituted Cationic Porphyrins with Synthetic Nucleic Acids

  • Natalia Sh. Lebedeva G.A. Krestov Institute of Solution Chemistry
  • Elena S. Yurina G.A. Krestov Institute of Solution Chemistry
  • Sabir S. Guseinov G.A. Krestov Institute of Solution Chemistry
  • Oskar I. Koifman N.D. Zelinsky Institute of Organic Chemistry
Keywords: Porphyrins, nucleic acids, intercalates

Abstract

The complex formation of monoheteryl-substituted tricationic porphyrins with representative polynucleotides (poly[d(GC)2] and poly[d(AT)2]) was studied. It has been spectrally established that the studied porphyrins form intercalation complexes of different geometry with poly[d(GC)2]: 1) intercalation between the nitrogenous bases of the porphyrin macroring; 2) intercalation between the nitrogenous bases of the monoheteryl substituent. The studied porphyrins form complexes with the poly[d(AT)2] groove. The DSC method was used to analyse the temperature dependences of the specific heat capacities of solutions of the initial reagents and complexes of porphyrins with poly[d(GC)2] and poly[d(AT)2]; it was found that the proportion of structural changes in the analysed solution associated with intercalation significantly exceeds the similar value during the formation of the complex in the groove of the nucleic acid. The results obtained demonstrate a new potential opportunity to increase the selectivity of binding of ligands to nucleic acids.

References

Bray F., Jemal A., Grey N., Ferlay J., Forman D. Lancet Oncol. 2012, 13, 790. https://doi.org/10.1016/S1470-2045(12)70211-5

Khattab M., Al‐Karmalawy A.A. Front. Chem. 2021, 9, 628398. https://doi.org/10.3389/fchem.2021.628398

Eldehna W.M., Abo-Ashour M.F., Nocentini A., Gratteri P., Eissa I.H., Fares M., Ismael O.E., Ghabbour H.A., Elaasser M.M., Abdel-Aziz H.A. Eur. J. Med. Chem. 2017, 139, 250. https://doi.org/10.1016/j.ejmech.2017.07.073

Cheung-Ong K., Giaever G., Nislow C. Chem. Biol. 2013, 20, 648. https://doi.org/10.1016/j.chembiol.2013.04.007

Bhaduri S., Ranjan N., Arya D.P. Beilstein J. Org. Chem. 2018, 14, 1051. https://doi.org/10.3762/bjoc.14.93

Ferguson L.R., Denny W.A. Mutat. Res.-Fund. Mol. M. 2007, 623, 14. https://doi.org/10.1016/j.mrfmmm.2007.03.014

Lebedeva N.S., Yurina E.S., Gubarev Y.A., Syrbu S.A. Spectrochim. Acta, A 2018, 199, 235. https://doi.org/10.1016/j.saa.2018.03.066

Lebedeva N.S., Yurina E.S., Gubarev Y.A. Spectrochim. Acta, A 2019, 215, 153. https://doi.org/10.1016/j.saa.2019.02.047

Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macrohetero-cyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k

Koifman O.I., Ageeva T.A., Kuzmina N.S., Otvagin V.F., Nyuchev A.V., Fedorov A.Yu., Belykh D.V., Lebedeva N.Sh., Yurina E.S., Syrbu S.A., Koifman M.O., Gubarev Y.A., Bunin D.A., Gorbunova Yu.G., Martynov A.G., Tsivadze A.Yu., Dudkin S.V., Lyubimtsev A.V., Maiorova L.A., Kishalova M.V., Petrova M.V., Sheinin V.B., Tyurin V.S., Zamilatskov I.A., Zenkevich E.I., Morshnev P.K., Berezin D.B., Drondel E.A., Kustov A.V., Pogorilyy V.A., Noev A.N., Eshtukova-Shcheglova E.A., Plotnikova E.A., Plyutinskaya A.D., Morozova N.B., Pankratov A.A., Grin M.A., Abramova O.B., Kozlovtseva E.A., Drozhzhina V.V., Filonenko E.V., Kaprin A.D., Ryabova A.V., Pominova D.V., Romanishkin I.D., Makarov V.I., Loschenov V.B., Zhdanova K.A., Ivantsova A.V., Bortnevskaya Yu.S., Bragina N.A., Solovieva A.B., Kuryanova A.S., Timashev P.S. Macroheterocycles 2022, 15, 207-302. https://doi.org/10.6060/mhc224870k

Lebedeva N., Yurina E., Lebedev M., Kiselev A., Syrbu S., Gubarev Y. Macroheterocycles 2021, 14, 342. https://doi.org/10.6060/mhc214031g

Gubarev Y.A., Lebedeva N.S., Yurina E.S., Syrbu S.A., Kiselev A.N., Lebedev M.A. J. Pharm. Anal. 2021, 11, 691-698. https://doi.org/10.1016/j.jpha.2021.08.003

Peacocke A., Skerrett J.H. Trans. Faraday Soc. 1956, 52, 261. https://doi.org/10.1039/tf9565200261

Lipscomb L.A., Zhou F.X., Presnell S.R., Woo R.J., Peek M.E., Plaskon R.R., Williams L.D. Biochemistry 1996, 35, 2818. Song H., Kaiser J.T., Barton J.K. Nat. Chem. 2012, 4, 615. https://doi.org/10.1021/bi952443z

Song H., Kaiser J.T., Barton J.K. Nat. Chem. 2012, 4, 615. https://doi.org/10.1038/nchem.1375

He X., Zhou Y., Wang L., Li T., Zhang M., Shen T. Dyes Pigm. 1998, 39, 173. https://doi.org/10.1016/S0143-7208(98)00007-2

Kelly J.M., Murphy M.J., McConnell D.J., OhUigin C. Nucleic Acids Res. 1985, 13, 167. https://doi.org/10.1093/nar/13.17.6017

Chirvony V.S., Galievsky V.A., Kruk N.N., Dzhagarov B.M., Turpin P.-Y. J. Photochem. Photobiol. B: Biol. 1997, 40, 154. https://doi.org/10.1016/S1011-1344(97)00043-2

Shen Y., Myslinski P., Treszczanowicz T., Liu Y., Koningstein J. J. Phys. Chem. 1992, 96, 7782. https://doi.org/10.1021/j100198a052

Keane P.M., Kelly J.M. Coord. Chem. Rev. 2018, 364, 137. https://doi.org/10.1016/j.ccr.2018.02.018

Maleev V., Semenov M., Kruglova E., Bolbuk T., Gasan A., Bereznyak E., Shestopalova A. J. Mol. Struct., 2003, 645(2-3), 145. https://doi.org/10.1016/S0022-2860(02)00541-0

Drew H.R., Dickerson R.E. J. Mol. Biol. 1981, 151, 535. https://doi.org/10.1016/0022-2836(81)90009-7

Banerjee D., Pal S.K. J. Phys. Chem. B 2007, 111, 10833. https://doi.org/10.1021/jp074697n

Vega M.C., García Sáez I., Aymamí J., Eritja R., Van Der Marel G.A., van Boom J.H., Rich A., Coll M. Eur. J. Biochem. 1994, 222, 721. https://doi.org/10.1111/j.1432-1033.1994.tb18917.x

Published
2023-10-19
How to Cite
Lebedeva, N., Yurina, E., Guseinov, S., & Koifman, O. (2023). Interaction of Monoheteryl Substituted Cationic Porphyrins with Synthetic Nucleic Acids. Macroheterocycles, 16(3), 211-217. https://doi.org/10.6060/mhc235287l
Section
Porphyrins