Preparation and Electrochemically Catalytic Hydrogen Evolution of Co(III)corrole Copolymerized with Mono-, Bis- and Tri-Thiophenes

  • Yuan Lu
  • Xiaohong Zhang
  • Minzhi Li
  • Weihua Zhu
  • Xu Liang

Аннотация

A series of conductive polymers of thiophene-substituted CoШcorrole copolymerized with mono-, bis- and tri-thiophenes have been prepared by electrochemical polymerization. Compared with the CoШcorrole monomer, the electrocatalytic hydrogen evolution performance was significantly improved. In particular, when the molar ratio of CoШcorrole and bithiophene is 10:1, the conductive polymer prepared shows better electrocatalytic hydrogen evolution performance. In addition, when comparing the effect of chain length of thiophene, CoШcorrole-trithiophene showed the greatest improvement on the hydrogen evolution performance, followed by bis- and mono-thiophene.

Литература

Lin L., Zhang Q., Ni Y.X., et al. Chem. 2022, 8, 1822-1854. https://doi.org/10.1016/j.chempr.2022.03.027

Fabretto M.V., Evans D.R., Mueller M., et al. Chem. Mater. 2012, 24, 3998-4003. https://doi.org/10.1021/cm302899v

Kaur G., Adhikari R., Cass P., et al. RSC Adv. 2015, 5, 37553-37567. https://doi.org/10.1039/C5RA01851J

Liu Y.S., Lyu S.S., Wen F.L., et al. J. Mater. Sci. Technol. 2024, 172, 33-50. https://doi.org/10.1016/j.jmst.2023.08.002

Das T.K., Prusty S. Polym-Plast. Technol. 2012, 51, 1487-1500. https://doi.org/10.1080/03602559.2012.710697

Alegret N., Dominguez A.A., Mecerreyes D. Biomacromolecules 2018, 20, 73-89. https://doi.org/10.1021/acs.biomac.8b01382

Gerard M., Chaubey A., Malhotra B.D. Biosens. Bioelectron. 2002, 17, 345-359. https://doi.org/10.1016/S0956-5663(01)00312-8

Zhu T.Y., Sternlicht H., Ha Y., et al. Nat. Energy 2023, 8, 129-137. https://doi.org/10.1038/s41560-022-01176-6

Chouki T., Machreki M., Emin S. Int. J. Hydrogen Energy 2020, 45, 21473-21482. https://doi.org/10.1016/j.ijhydene.2020.05.257

Liu J.L., Tang D.Y., Hou W.W., et al. J. Energy Storage 2023, 74(A), 109329. https://doi.org/10.1016/j.est.2023.109329

Yan J., Sy S., Wang H., et al. Int. J. Electrochem. Sci. 2020, 15, 12644-12653. https://doi.org/10.20964/2020.12.68

Qiang G., Wang W., Ma Y., et al. Talanta 2004, 62, 477-482. https://doi.org/10.1016/j.talanta.2003.08.017

Wu H., Lian K. J. Power Sources 2014, 271, 534-537. https://doi.org/10.1016/j.jpowsour.2014.08.034

Kim S., Jang L.K., Park H.S., et al. Sci. Rep. 2016, 6, 30475. https://doi.org/10.1038/srep30475

Ranathunge T.A., Ngo D.T., Karunarathilaka D., et al. J. Mater. 2020, 8, 5934-5940. https://doi.org/10.1039/C9TC06945C

Liu P., Wang X., Li H.D. Synth. Met. 2013, 181, 72-78. https://doi.org/10.1016/j.synthmet.2013.08.010

Rueda F.C.G., González J.T. Electrochim. Acta 2020, 347, 136272. https://doi.org/10.1016/j.electacta.2020.136272

Kitani A., Satoguchi K., Tang H.Q., et al. Synth. Met. 1995, 69, 131-132. https://doi.org/10.1016/0379-6779(94)02388-F

Cao G., Cui H.H., Wang L.L., et al. ACS Appl. Electron. Mater. 2020, 2, 2750-2759. https://doi.org/10.1021/acsaelm.0c00457

Sharma P.S., Pietrzyk-Le A., D'Souza F., et al. Anal. Bioanal. Chem. 2012, 402, 3177-204. https://doi.org/10.1007/s00216-011-5696-6

Lee K., Vikneshvaran S., Lee H., et al. Int. J. Hydrogen Energy 2024, 51(C), 1184-1196. https://doi.org/10.1016/j.ijhydene.2023.11.037

Wei W., Liang H.W., Parvez K., Zhuang X.D., et al. Angew. Chem. Int. Ed. 2014, 126, 1596-1600. https://doi.org/10.1002/ange.201307319

Feng J.X., Xu H., Ye S.H., et al. Angew. Chem. Int. Ed. 2017, 56, 8120-8124. https://doi.org/10.1002/anie.201702934

Ma D.D., Han S.G., Cao C., et al. Energy Environ. Sci. 2021, 14, 1544-1552. https://doi.org/10.1039/D0EE03731A

Zheng Y., Jiao Y., Li L.H., et al. ACS Nano 2014, 8, 5290-5296. https://doi.org/10.1021/nn501434a

Li M.S., Ma X.B., Luque R., et al. Catal. Today 2021, 368, 1-290. https://doi.org/10.1016/j.cattod.2021.01.008

Zhao X.J., Li S., Cheng H.F., et al. ACS Appl. Mater. Interfaces 2018, 10, 3912-3920. https://doi.org/10.1021/acsami.7b14919

Zhang X.H., Zhang X.F., Zhu W.H., et al. Dalton Trans. 2022, 51, 6177-6185. https://doi.org/10.1039/D2DT00515H

Darby M.T., Réocreux R., Michaelides A., et al. ACS Catal. 2018, 8, 5038-5050. https://doi.org/10.1021/acscatal.8b00881

Patra B.C., Khilar S., Manna R.N., et al. ACS Catal. 2017, 7, 6120-6127. https://doi.org/10.1021/acscatal.7b01067

Liu L., Zha D.W., Wang Y., et al. Int. J. Hydrogen Energy 2014, 39, 14712-14719. https://doi.org/10.1016/j.ijhydene.2014.07.040

Опубликован
2024-06-24
Как цитировать
Lu, Y., Zhang, X., Li, M., Zhu, W., & Liang, X. (2024). Preparation and Electrochemically Catalytic Hydrogen Evolution of Co(III)corrole Copolymerized with Mono-, Bis- and Tri-Thiophenes. Макрогетероциклы/Macroheterocycles, 17(3), 247-254. https://doi.org/10.6060/245800l