Оn the Ability of Bacteriochlorophyll a to Generate Singlet Oxygen upon Photoexcitation in Aqueous Environment

  • Alexander A. Krasnovsky, Jr. ФИЦ Биотехнологии РАН
  • Anton S. Benditkis ФИЦ Биотехнологии РАН
  • Anton S. Kozlov ФИЦ Биотехнологии РАН
Ключевые слова: бактериохлорофилл a, феналенон, мезо-тетра(п-сульфонатофенил)порфирин (ТСФП), синглетный кислород, фосфоресценция, метод химических ловушек, тушение, фотодинамическая терапия (ФДТ)

Аннотация

The quantum yields of singlet oxygen generation (Ф) photosensitized by bacteriochlorophyll a have been measured in diethyl ether and aqueous (D2O and H2O) dispersions, in which hydrophobic bacteriochlorophyll molecules are solubilized by a detergent Triton X-100. According to the absorption spectra, bacteriochlorophyll molecules are monomeric in all samples studied. For measurements, both detection of photosensitized phosphorescence of singlet oxygen at 1270 nm and singlet oxygen trapping by 1,3-diphenylisobenzofuran were applied. In ether, both methods gave the highest quantum yields (Ф=0.60±0.05) and slightly lower Ф=0.3‒0.4 was obtained in micellar dispersions in deuterium oxide. The lowest, but still reasonable, value of Ф was found in aqueous (H2O) dispersions (Ф=0.12±0.02). In detergent-free water, where aggregated pigment molecules predominate, 1O2 generation was not detected. Generation of 1O2  was always accompanied by active quenching of 1O2  by bacteriochlorophyll with the rate constants kq=(1.4‒2.2)·109 M-1s-1. The data indicate that monomeric bacteriochlorophyll molecules actively photosensitize generation of 1O2 in organic solvents and do not lose this ability in aqueous environment, which most likely determines photodynamic action and PDT by bacteriochlorophyll and its derivatives.

Литература

Weishaupt K.R., Gomer C. J., Dougherty T.J. Cancer Res. 1976, 36, 2326-2329.

Krasnovsky A.A., Jr. In: Reviews on Science and Technology. Modern Problems of Laser Physics, Vol. 3 (Akhmanov S.A. and Chernyaeva E.B., Eds.) Moscow: All-USSR Institute for Scientific and Technical Information, 1990. p. 63-135 [Красновский A.A. мл. В кн.: Итоги науки и техники. Современные проблемы лазерной физики, Т. 3 (Ахманов С.А., Черняева Е.Б., ред.), Москва: ВИНИТИ, 1990. С. 63-135].

Krasnovsky A.A., Jr. In: Photodynamic Therapy at the Cellular Level (Uzdensky A.B., Ed.) Kerala: Research Signpost, 2007. p. 17-62.

Krasnovsky A.A., Jr. In: Basic Sciences for Medicine: Biophysical and Medical Technologies, Vol. 1 (Grigoriev A.I., Vladimirov Yu.A., Eds.) Moscow: Max Press, 2015. p. 173-217 [Красновский А.А. мл. В кн.: Фундаментальные науки - медицине. Биофизические медицинские технологии, Т. 1 (Григорьев А.И., Владимиров Ю.А., ред.) Москва: Maкс Пресс, 2015. с. 173-217].

Mironov A.F. Ross. Khim. Zh. [Российский химический журнал] 1998, 43, 23-36.

Bashkatov A.N., Genina E.A., Kochubey V.I., Tuchin V.V. J. Phys. D: Appl. Phys. 2005, 38, 2543-2555. https://doi.org/10.1088/0022-3727/38/15/004

Lukyanetz E.A. J. Porphyrins Phthalocyanines 1999, 3, 424-432. https://doi.org/10.1002/(SICI)1099-1409(199908/10)3:6/7<424::AID-JPP151>3.3.CO;2-B

Clayton R.K., Sistrom W.R. The Photosynthetic Bacteria. New York and London: Plenum Press, 1978. 946 p.

Gaffron H. Chem. Ber. 1935, 68B, 1409-1411. https://doi.org/10.1002/cber.19350680735

Krasnovsky A.A., Jr. Biophysics [Биофизика] 1977, 22, 927-928. https://doi.org/10.1037/015635

Krasnovsky A.A., Jr. Photochem. Photobiol. 1979, 29, 29-36. https://doi.org/10.1111/j.1751-1097.1979.tb09255.x

Krasnovsky A.A., Jr., Vychegzhanina I.V., Drozdova N.N., Krasnovsky A.A. (senior) Dokl. AN SSSR (Biophysics) 1985, 283, 161-163.

Borland C.F., McGarvey D.I., Truscott T.J., Cogdell R.G., Land E.J. J. Photochem. Photobiol. B: Biology 1987, 1, 93-101. https://doi.org/10.1016/1011-1344(87)80009-X

Egorov S.Yu., Krasnovsky A.A., Jr. SPIE Proceedings (Laser Applications in Life Sciences) 1990, 1403, 611-621.

Egorov S.Yu., Krasnovsky A.A., Jr., Vychegzhanina I.V., Drozdova N.N., Krasnovsky A.A. (senior) Dokl. AN SSSR (Biophysics) 1990, 310, 6-10.

Benditkis A.S., Ashikhmin A.A., Moskalenko A.A, Krasnovsky A.A., Jr. Photosynthesis Research 2024, 159, 291-301. https://doi.org/10.1007/s11120-023-01070-6

Goedheer J.C. Biochim. Biophys. Acta 1958, 27, 478-490. https://doi.org/10.1016/0006-3002(58)90375-5

Shaposhnikova M.G., Krasnovsky A.A. (senior) Biochemistry [Биохимия] 1973, 38, 193-201.

Limantara L., Koehler P., Wilhelm B., Porra R.J., Scheer H. Photochem. Photobiol. 2006, 82, 770-780. https://doi.org/10.1562/2005-09-07-RA-676

Ashur I., Goldschmidt R., Pinkas I., Salomon Y., Szewczyk G., Sarna T., Scherz A. J. Phys. Chem. A 2009, 113, 8027-8037. https://doi.org/10.1021/jp900580e

Riyad Y.M., Naumov S., Schastak S., Griebel J., Kahnt A., Haupl T., Neuhaus J., Abel B., Hermann R. 2014, 118, 11646–11658. https://doi.org/10.1021/jp507270k

Krasnovsky A.A., Jr., Benditkis A.S., Kozlov A.S. Biochemistry (Moscow) 2019, 84, 153-163. https://doi.org/10.1134/S0006297919020068

Krasnovsky A.A., Jr., Kozlov A.S., Rоumbal Ya.V. Photochem. Photobiol. Sci. 2012, 11, 988-997. https://doi.org/10.1039/c2pp05350k

Krasnovsky A.A., Jr., Kozlov A.S. Biophysics 2014, 59, 199-205. https://doi.org/10.1134/S000635091402016X

Krasnovsky A.A., Jr., Kozlov A.S. J. Photochem. Photobiol. A: Chemistry 2016, 329, 167-174. https://doi.org/10.1016/j.jphotochem.2016.06.026

Oliveros E., Suardi-Murasecco P., Aminian-Saghafi T., Braun A.M., Hansen H.-J. Helv. Chim. Acta 1991, 74, 79-90. https://doi.org/10.1002/hlca.19910740110

Schmidt R., Tanielian C., Dunsbach R., Wolff C. J. Photochem. Photobiol. A: Chemistry 1994, 79, 11-17. https://doi.org/10.1016/1010-6030(93)03746-4

Ogilby P.R., Foote C. S. J. Am. Chem. Soc. 1982, 104, 2069-2070. https://doi.org/10.1021/ja00371a067

Egorov S.Yu., Krasnovsky A.A. Jr. Biofizika, 1983, 28, 497-498. https://doi.org/10.1016/0022-2313(83)90019-4

Rodgers M.A.J. Photochem. Photobiol. 1983, 37, 99-103. https://doi.org/10.1111/j.1751-1097.1983.tb04440.x

Shinoda K., Nakagawa T., Tamamushi B.-I., Isemura T. Colloidal Surfactants (Russ. transl.). Academic Press, New York, 1963, p. 11.

Gurinovich G.P., Losev A.P., Sagun E.I. J. Appl. Spectrosc. (Minsk) 1977, 26, 1028-1034. https://doi.org/10.1007/BF01124477

Connolly J.S., Eward B.S., Janssen A.F. Photochem. Photobiol. 1982, 36, 565-574. https://doi.org/10.1111/j.1751-1097.1982.tb04417.x

Sharonov G.V., Karmakova T.A., Kassies R., Pljutinskaya A.D., Grin M.A., Refregiers M., Yakubovskaya R.I., Mironov A.F., Maurizot J.-C., Vigny P., Otto C., Feofanov A.F. Free Radical Biology and Medicine 2006, 40, 407-419. https://doi.org/10.1016/j.freeradbiomed.2005.08.028

Hoebeke M., Damoiseau X. Photochem. Photobiol. Sci. 2002, 1, 283-287. https://doi.org/10.1039/b201081j

Опубликован
2024-06-20
Как цитировать
Krasnovsky, Jr., A., Benditkis, A., & Kozlov, A. (2024). Оn the Ability of Bacteriochlorophyll a to Generate Singlet Oxygen upon Photoexcitation in Aqueous Environment. Макрогетероциклы/Macroheterocycles, 17(2), 58-64. https://doi.org/10.6060/mhc245924k