Supplementary Materials

DOI: 10.6060/mhc235118s

N-Oxyethylimidazolium Calix[4]arenes and Thiacalix[4]arenes: Difference in Solubilization Property and Detection of Adenine-Containing Nucleotides

Elza D. Sultanova,^{a@} Bulat Kh. Gafiatullin,^a Evgeny A. Ocherednyuk,^a Ramilya I. Garipova,^a Anastasia A. Volodina,^a Amina G. Daminova,^a Vladimir G. Evtugyn,^a Vladimir A. Burilov,^a Svetlana E. Solovieva,^b and Igor S. Antipin^a

^aKazan Federal University, 420008 Kazan, Russian Federation

^bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russian Federation

[@]Corresponding author E-mail: elsultanova123@gmail.com

Figure S1. Synthesis of 5,7,11,17-tetra-*p-tert*-butyl-25,27-dioctil-26,28- di-4'brombutyloxy-2,8,14,20- tetrathiacalix[4]arene.

Figure S3. A) Fluorescence emission of pyrene in aqueous solutions of 4EG-TCA-C8; B) Plots of pyrene 1:3 ratio versus surfactant concentration for 4EG-TCA-C8, C(4EG-TCA-C8) = 0.0002 - 2 mM, C(pyrene) = 0.001 mM.

Figure S4. Decreasing sigmoid of the Boltzmann type showing the center of the sigmoid x0 (CAC_{abs.EY}) for 4EG-CA-Cn and 4EG-TCA-Cn (n = 4, 8) by EY absorbance titration

Figure S5. Fluorescence spectra of 0.02 mM EY in the presence of different concentrations of A) 4EG-TCA-C4, B) 4EG-TCA-C8, C) 4EG-CA-C4 and D) 4EG-CA-C8 <u>before redshifts.</u>

Figure S6. Stern–Volmer plot for the fluorescence quenching of 0.02 mM EY in water by 4EG-CA-Cn and 4EG-TCA-Cn (n = 4, 8) before CAC.

Figure S7. Decreasing sigmoid of the Boltzmann type showing the center of the sigmoid x0 (CAC_{abs.EY}) for 4EG-CA-Cn and 4EG-TCA-Cn (n = 4, 8) by EY fluorescence titration

Figure S8. Images of confocal microscopy of EY, $C(EY) = 0.02 \text{ mM}, \text{H}_2\text{O}.$

Figure S9. UV-vis spectra of A) 4EG-CA-C8 (0.003 mM) and B) 4EG-TCA-C8 (0.0075 mM) - EY after adding of a) AMP, b) ADP, c) ATP; H₂O, C(AD) = 0.05 mM, C(EY) = 0.02 mM (dash plot is EY in water, orange - EY-macrocycle).

Figure S10 UV-vis spectra of A) 4EG-CA-C8 (0.02 mM) and B) 4EG-TCA-C8 (0.02 mM) - EY after adding of a) AMP, b) ADP, c) ATP; H₂O, C(AD) = 0.05 mM, C(EY) = 0.02 mM (dash plot is EY in water, orange - EY-macrocycle).

Figure S11 UV-vis spectra of EY after adding of ATP; H_2O , C(AD) = 0-0.5 mM, C(EY) = 0.02 mM, C(AD) = 0-0.5 mM.