## **Supporting information**

## **Boron(III)** Subphthalocyanines Axially Modified with Unsaturated and Aromatic Carboxylic Acids: Synthetic Peculiarities and Photochemical Properties

Alina M. Fazlyeva,<sup>a</sup> Daria A. Lapshina,<sup>a</sup> Karina I. Kozhevnikova,<sup>a</sup> Pavel A. Stuzhin<sup>a</sup> and Ivan A. Skvortsov<sup>a@</sup>

<sup>a</sup> Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology (ISUCT), 153000 Ivanovo, Russia.

<sup>@</sup>Corresponding author E-mail: <u>ivanskvortsov@mail.ru</u>

## **Table of contents**

| Figure                | Title                                                                                                                                              | Pages |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Fig. S. 1             | FTIR spectra of starting acrylic, fumaric, maleic and terephthalic acid                                                                            | 2     |
| Fig. S. 2-Fig. S. 12  | <sup>1</sup> H and <sup>11</sup> B NMR spectra of obtained subphthalocyanines                                                                      | 3-8   |
| Fig. S. 13-Fig. S. 18 | Fluorescence emission spectra, excitation and absorption spectra of obtained subphthalocyanines in EtOH                                            | 9-11  |
| Fig. S. 19-Fig. S. 36 | Fluorescence decay in EtOH, DMSO and toluene of obtained subphthalocyanines from EasyTau report                                                    | 12-17 |
| Fig. S. 37-Fig. S. 42 | Electronic absorption spectra of obtained subphthalocyanines at<br>different concentrations and dependences of concentration on<br>optical density | 18-20 |



Fig. S. 1. FTIR spectra of starting acrylic acid (ATR), fumaric acid (KBr disk), maleic acid (KBr disk) and terephthalic acid (ATR)



Fig. S. 3. <sup>11</sup>B NMR spectrum of *s*PcAA1 recorded in CDCl<sub>3</sub>







Fig. S. 7. <sup>11</sup>B NMR spectrum of *s*PcAA3 recorded in CDCl<sub>3</sub>



Fig. S. 9. <sup>11</sup>B NMR spectrum of *s*PcFA recorded in CDCl<sub>3</sub>



Fig. S. 11. <sup>11</sup>B NMR spectrum of *s*PcMA recorded in CDCl<sub>3</sub>



Fig. S. 12. <sup>1</sup>H and <sup>11</sup>B NMR spectrum of *s*PcTA recorded in DMSO-*d*<sub>6</sub>



Fig. S. 13. Fluorescence emission spectra (red) and excitation (black) spectra of *s*PcAA1 in EtOH.  $\lambda_{ex} = 500 \text{ nm}$ ,  $\lambda_{em} = 580 \text{ nm}$ . Dotted lines show normalized absorption spectra



Fig. S. 14. Fluorescence emission spectra (red) and excitation (black) spectra of *s*PcAA2 in EtOH.  $\lambda_{ex} = 500 \text{ nm}$ ,  $\lambda_{em} = 580 \text{ nm}$ . Dotted lines show normalized absorption spectra



Fig. S. 15. Fluorescence emission spectra (red) and excitation (black) spectra of *s*PcAA3 in EtOH.  $\lambda_{ex} = 500 \text{ nm}$ ,  $\lambda_{em} = 580 \text{ nm}$ . Dotted lines show normalized absorption spectra



Fig. S. 16. Fluorescence emission spectra (red) and excitation (black) spectra of *s*PcFA in EtOH.  $\lambda_{ex} = 500 \text{ nm}$ ,  $\lambda_{em} = 580 \text{ nm}$ . Dotted lines show normalized absorption spectra



Fig. S. 17. Fluorescence emission spectra (red) and excitation (black) spectra of *s*PcMA in EtOH.  $\lambda_{ex} = 500 \text{ nm}, \lambda_{em} = 580 \text{ nm}.$  Dotted lines show normalized absorption spectra



Fig. S. 18. Fluorescence emission spectra (red) and excitation (black) spectra of *s*PcTA in EtOH.  $\lambda_{ex} = 500 \text{ nm}, \lambda_{em} = 580 \text{ nm}.$  Dotted lines show normalized absorption spectra



Fig. S. 19. Fluorescence decay of *s*PcAA1 (blue) in EtOH and LUDOX® (red)



Fig. S. 20. Fluorescence decay of sPcAA1 (blue) in DMSO and LUDOX® (red)



Fig. S. 21. Fluorescence decay of sPcAA1 (blue) in toluene and LUDOX® (red)



Fig. S. 22. Fluorescence decay of sPcAA2 (blue) in EtOH and LUDOX® (red)



Fig. S. 23. Fluorescence decay of sPcAA2 (blue) in DMSO and LUDOX® (red)



Fig. S. 24. Fluorescence decay of sPcAA2 (blue) in toluene and LUDOX® (red)



Fig. S. 25. Fluorescence decay of *s*PcAA3 (blue) in EtOH and LUDOX® (red)



Fig. S. 26. Fluorescence decay of sPcAA3 (blue) in DMSO and LUDOX® (red)



Fig. S. 27. Fluorescence decay of sPcAA3 (blue) in toluene and LUDOX® (red)



Fig. S. 28. Fluorescence decay of sPcFA (blue) in EtOH and LUDOX® (red)



Fig. S. 29. Fluorescence decay of sPcFA (blue) in DMSO and LUDOX® (red)



Fig. S. 30. Fluorescence decay of sPcFA (blue) in toluene and LUDOX® (red)



Fig. S. 31. Fluorescence decay of sPcMA (blue) in EtOH and LUDOX® (red)



Fig. S. 32. Fluorescence decay of sPcMA (blue) in DMSO and LUDOX® (red)



Fig. S. 33. Fluorescence decay of sPcMA (blue) in toluene and LUDOX® (red)



Fig. S. 34. Fluorescence decay of sPcTA (blue) in EtOH and LUDOX® (red)



Fig. S. 35. Fluorescence decay of sPcTA (blue) in DMSO and LUDOX® (red)



Fig. S. 36. Fluorescence decay of sPcTA (blue) in toluene and LUDOX® (red)



Fig. S. 37. Electronic absorption spectra of *s*PcAA1 in toluene at different concentrations. Dependence of concentration on optical density is shown in the inset



Fig. S. 38. Electronic absorption spectra of *s*PcAA2 in toluene at different concentrations. Dependence of concentration on optical density is shown in the inset



Fig. S. 39. Electronic absorption spectra of *s*PcAA3 in toluene at different concentrations. Dependence of concentration on optical density is shown in the inset



Fig. S. 40. Electronic absorption spectra of *s*PcFA in toluene at different concentrations. Dependence of concentration on optical density is shown in the inset



Fig. S. 41. Electronic absorption spectra of *s*PcMA in toluene at different concentrations. Dependence of concentration on optical density is shown in the inset



Fig. S. 42. Electronic absorption spectra of *s*PcTA in EtOH at different concentrations. Dependence of concentration on optical density is shown in the inset