Макрогетероциклические соединения – ключевое звено в создании новых функциональных материалов и молекулярных устройств
Аннотация
В обзоре рассмотрены последние достижения в области направленного синтеза и применения макрогетероциклических соединений в науке, технике и технологии, а именно: в качестве катализаторов различных процессов, в фото- и электрокатализе, оптических хемосенсоров для катионов металлов, селективных рецепторов органических соединений, индукторов и селекторов, в нелинейной оптике, органической электронике, в качестве магнитов, фотосенсибилизаторов для фотодинамической терапии (ФДТ) ряда онкозаболеваний и для антимикробной ФДТ и т.д.
Для цитирования:
Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T. , Ch. von Borczyskowski, Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocyclic Compounds – a Key Building Block in New Functional Materials and Molecular Devices Macroheterocycles 2020, 13, 311-467, DOI: 10.6060/mhc200814k
Литература
Milgrom L.R. The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford: University Press, 1997. 256 p.
Battersby A.R. Nat. Prod. Rep. 2000, 17, 507-526.
https://doi.org/10.1039/b002635m
Tetrapyrroles: Birth, Life and Death (Warren M.J., Smith A.G., Ed.) N.Y.: Springer Science & Business Media, 2009. 406 p.
Serebrennikova O.V. Geochemistry of Porphyrins: Conditions of Accumulation and Direction of Metalloporphyrin Transformation in Sendimentary Rocks. In: Advances in Porphyrin Chemistry. Vol. 3. (Golubchikov O.A., Ed.) SPb.: St-PbGU, 2001. p. 326-349.
Keely B.J. Geochemistry of Chlorophylls. In: Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration. Vol. 25. (Grimm B., Porra R.J., Rüdiger W., Scheer H., Ed.) Netherlands: Springer, 2006. р. 535-561.
https://doi.org/10.1007/1-4020-4516-6_37
Bandaranayake W.M. Nat. Prod. Rep. 2006, 23, 223-255.
https://doi.org/10.1039/b307612c
Kepp K.P. Coord. Chem. Rev. 2017, 344, 363-374.
https://doi.org/10.1016/j.ccr.2016.08.008
Collman J.P., Boulatov R., Sunderland C.J, Fu L. Chem. Rev. 2004, 104, 561-588.
https://doi.org/10.1021/cr0206059
Anderson J.L.R., Chapman S.K. Dalton Trans. 2005, 13-24.
https://doi.org/10.1039/b413046d
Bertini I., Cavallaro G., Rosato A. Chem. Rev. 2006, 106, 90-115.
https://doi.org/10.1021/cr050241v
Dereven'kov I.A., Salnikov D.S., Silaghi-Dumitrescu R., Makarov S.V., Koifman O.I. Coord. Chem. Rev. 2016, 309, 68-83.
https://doi.org/10.1016/j.ccr.2015.11.001
Saga Y., Yamashita M., Imanishi M., Kimura Y., Masaoka Y., Hidaka T., Nagasawa Y. ACS Omega 2020, 5, 6817−6825.
https://doi.org/10.1021/acsomega.0c00152
Lindsey J.S. Chem. Rev. 2015, 115, 6534-6620.
https://doi.org/10.1021/acs.chemrev.5b00065
Malyasova A.S., Khelevina O.G., Koifman O.I. Ross. Khim. Zh. 2017, 61, 3-10.
Krasnovsky Jr. А.А. Ross. Khim. Zh. 2017, 61, 17-41.
Scheer H. An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. In: Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration. Vol. 25. (Grimm B., Porra R.J., Rüdiger W., Scheer H., Eds.) Netherlands: Springer, 2006. p. 1-26.
https://doi.org/10.1007/1-4020-4516-6_1
Gunderson V.L., Wasielewski M.R. Supramolecular Chlorophyll Assemblies for Artificial Photosynthesis. In: Handbook of Porphyrin Science. Vol. 20. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co. Pte. Ltd.: Singapore, 2012. p. 45-105.
https://doi.org/10.1142/9789814335508_0022
Borbas K.E. Chlorins. In: Handbook of Porphyrin Science. Vol. 36. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016. p. 1-149.
Storz J.F. Physiology 2016, 31, 223-232.
https://doi.org/10.1152/physiol.00060.2015
Yonetani T., Kanaori K. Biochim. Biophys. Acta 2013, 1834, 1873-1884.
https://doi.org/10.1016/j.bbapap.2013.04.026
Wilks A. Antioxidants & Redox Signaling 2002, 4, 603-614.
https://doi.org/10.1089/15230860260220102
Rovira C., Kunc K., Hutter J., Parrinello M. Inorg. Chem. 2001, 40, 11-17.
https://doi.org/10.1021/ic000143m
Jones A.R. Photochem. Photobiol. Sci. 2017, 16, 820-834.
https://doi.org/10.1039/C7PP00054E
Shell T.A., Lawrence D.S. Acc. Chem. Res. 2015, 48, 11, 2866-2874. https://doi.org/10.1021/acs.accounts.5b00331
Proinsias K., Giedyk M., Gryko D. Chem. Soc. Rev. 2013, 42, 6605-6619.
https://doi.org/10.1039/c3cs60062a
Ishihara S., Labuta J., Van Rossom W., Ishikawa D., Minami K., Hill J.P., Ariga K. Phys. Chem. Chem. Phys. 2014, 16, 9713-9746.
https://doi.org/10.1039/c3cp55431g
Mirkovic T., Ostroumov E.E., Anna J.M., van Grondelle R., Govindjee, Scholes G.D. Chem. Rev. 2017, 117, 249-293.
https://doi.org/10.1021/acs.chemrev.6b00002
Aratani N., Kim D., Osuka A. Acc. Chem. Res. 2009, 42, 1922-1934.
https://doi.org/10.1021/ar9001697
Otsuki J. J. Mater. Chem. A 2018, 6, 6710-6753.
https://doi.org/10.1039/C7TA11274B
Liu Y., Zhang S., Lindsey J.S. Nat. Prod. Rep. 2018, 35, 879-901.
https://doi.org/10.1039/C8NP00020D
Taniguchi M., Lindsey J.S. Chem. Rev. 2017, 117, 344-535.
https://doi.org/10.1021/acs.chemrev.5b00696
Dudkin S.V., Makarova E.A., Lukyanets E.A. Russ. Chem. Rev. 2016, 85, 700-730.
https://doi.org/10.1070/RCR4565
Chen C.-Y., Sun E., Fan D., Taniguchi M., McDowell B.E., Yang E., Diers J. R., Bocian D.F., Holten D., Lindsey J.S. Inorg. Chem. 2012, 51, 9443-9464.
https://doi.org/10.1021/ic301262k
Brückne C., Samankumara L., Ogikubo J., Syntheses of Bacteriochlorins and Isobacteriochlorins. In: Handbook of Porphyrin Science. Vol. 17. (Kadish K.M., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2012. p. 1-112.
https://doi.org/10.1142/9789814335508_0003
Szyszko B., Latos-Grażyński L. Chem. Soc. Rev. 2015, 44, 3588-3616.
https://doi.org/10.1039/C4CS00398E
Berezin D.B., Karimov D.R., Kustov A.V. Corrols and Their Derivatives: Synthesis, Properties, and Prospects for Practical Application. (Koifman O.I., Ed.) M.: LENAND, 2018. 304 p.
Paolesse R. Synthesis and Modification of Porphyrinoids. In: Topics in Heterocyclic Chemistry. Vol. 33. Springer-Verlag: Berlin, 2014. p. 1-34.
https://doi.org/10.1007/978-3-642-38533-9
Barata J.F.B., Neves M.G.P.M.S., Faustino M.A.F., Tomé A.C., Cavaleiro J.A.S. Chem. Rev. 2017, 117, 3192-3253.
https://doi.org/10.1021/acs.chemrev.6b00476
Porphyrins: Structure, Properties, Synthesis (Enikolopjan N.S., Ed.) M: Nauka, 1985. 333 p.
Askarov K.A., Ageeva T.A., Rashidova S.T. Wastes of Sericulture. Ways of Their Processing, Application Prospects (O.I. Koifman, Ed.) M.: Khimia, 2008. 219 р.
Mironov A.F. Rossiiskii Khimicheskii Zhurnal 2017, 61, 42-68.
Grin M.A., Mironov A.F. Rus. Chem. Bull., Int. Ed. 2016, 65, 333-349.
https://doi.org/10.1007/s11172-016-1307-1
Nyuchev A.V., Otvagin V.F., Gavryushin A.E., Romanenko Yu.I., Koifman O.I., Belykh D.V., Schmalz H.-G., Fedorov A.Yu. Synthesis 2015, 47, 3717-3726.
https://doi.org/10.1055/s-0034-1378876
Otvagin V.F., Nyuchev A.V., Kuzmina N.S., Grishin I.D., Gavryushin A.E., Romanenko Yu.V., Koifman O.I., Belykh D.V., Peskova N.N., Shilyagina N.Yu., Balalaeva I.V., Fedorov A.Yu. Eur. J. Med. Chem. 2018, 144, 740-750.
https://doi.org/10.1016/j.ejmech.2017.12.062
Koifman O.I., Ponomarev G.V. A Method of Obtaining Methylpheophorbide, 2013, Patent RF No 2490273.
Ponomarev G.V., Koifman O.I. Photosensitizer and Method of its Preparation, 2014, Patent RF No 2523380.
Chissov V.I., Skobelkin O.K., Mironov A.F. et.al. Pirogov Russian Journal of Surgery 1994, 12, 3-6.
Hayashi T., Hisaeda Y. Acc. Chem. Res. 2002, 35, 35-43.
https://doi.org/10.1021/ar000087t
Lindsey J.S. Acc. Chem. Res. 2010, 43, 300-311.
https://doi.org/10.1021/ar900212t
Beletskaya I.P., Tyurin V.S., Uglov A., Stern C., Guilard R. Survey of Synthetic Routes for Synthesis and Substitution in Porphyrins. In: Handbook of Porphyrin Science. Vol. 23. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing, 2012. p. 81-278.
https://doi.org/10.1142/9789814397605_0010
Smith K.M. New J. Chem. 2016, 40, 5644-5649.
https://doi.org/10.1039/C6NJ00820H
Brückner C. Acc. Chem. Res. 2016, 49, 1080-1092.
https://doi.org/10.1021/acs.accounts.6b00043
Smith R.M. Strategies fo the Synthesis of Octaalkylporphyrin Systems. In: The Porphyrin Handbook. Vol. 1. (Kadish K.M., Smith K.M., Guilard R., Eds.) Academic Press: San Diego, 2000. p. 1-43.
Lindsey J.S. Synthesis of meso-Substituted Porphyrins. In: The Porphyrin Handbook. Vol. 1. (Kadish K.M., Smith K.M., Guilard R., Eds.) Academic Press: San Diego, 2000. p. 45-118.
Semeykin A.S., Syrbu S.A., Koifman O.I. Izv. Vyss. Ucheb. Zav., Ser. Khim. I Khim Technol. 2004, 47, 46-55.
Lash T.D. Synthesis of Novel Porphyrinoid Chromophores. In: The Porphyrin Handbook. Vol. 2. (Kadish K.M., Smith K.M., Guilard R., Eds.) Academic Press: San Diego, 2000. p. 125-196.
Cheprakov A.V. The Synthesis of π-Extended Porphyrins. In: Handbook of Porphyrin Science Vol. 13. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011. 1-149.
https://doi.org/10.1142/9789814322386_0010
Ishkov Yu.V., Zhilina Z.I., Vodzinskii S.V. In: Advances in Porphyrin Chemistry. Vol. 4. (Golubchikov O.A., Ed.) SPb.: St-PbGU, 2003. p. 31-44.
Smith B.E., Lash T.D. Tetrahedron 2010, 66, 4413-442.
https://doi.org/10.1016/j.tet.2010.04.069
Hiroto S., Miyake Y., Shinokubo H. Chem. Rev. 2016, 117, 2910-3043.
https://doi.org/10.1021/acs.chemrev.6b00427
Tanaka T., Osuka A. Chem. Soc. Rev. 2015, 44, 943-969.
https://doi.org/10.1039/C3CS60443H
Koifman O.I., Ageeva T.A. Porphyrin Polymers: Synthesis, Properties, Applications. M.: LENAND, 2018. 304 p.
Matano Y. Chem. Rev. 2017, 117, 3138-3191.
https://doi.org/10.1021/acs.chemrev.6b00460
Claessens C.G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97.
https://doi.org/10.1002/tcr.20139
Kobayashi N. Synthesis and Characterization of Chiral Phthalocyanines. In: Handbook of Porphyrin Science. Vol. 23. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific, 2012. p. 373-440.
https://doi.org/10.1142/9789814397605_0012
Lomova T.N., Tyulyaeva E.Y., New Trends in the Direct Synthesis of Phthalocyanine/Porphyrin Complexes. In: Direct Synthesis of Metal Complexes. (Kharisov B., Ed.) Elsevier, 2018. p. 239-278.
https://doi.org/10.1016/B978-0-12-811061-4.00006-2
Koifman O.I., Ageeva T.A. Russ. Chem. Bull. 2015, 64, 2001-2011.
https://doi.org/10.1007/s11172-016-1111-y
Ageeva T.A., Golubev D.V., Gorshkova A.S., Ionov A.M., Koifman O.I., Mozhchil R.N., Rumyantseva V.D., Sigov A.S., Fomichev V.V. Macroheterocycles 2018, 11, 155-161.
https://doi.org/10.6060/mhc180171
Ageeva T.A., Golubev D.V., Gorshkova A.S., Ionov A.M., Kohylova E.V., Koifmah O.I., Mozhchil R.N., Rozhkova E.P., Rumyantseva V.D., Sigov A.S., Fomichev V.V. Macroheterocycles 2019, 12, 148-153.
https://doi.org/10.6060/mhc190442f
McConnell I., Li G., Brudvi G.W. Chem. Biol. 2010, 17, 434-447.
https://doi.org/10.1016/j.chembiol.2010.05.005
Bottari G., Trukhina O., Ince M., Torres T. Coord. Chem. Rev. 2012, 256, 2453-2477.
https://doi.org/10.1016/j.ccr.2012.03.011
Drain C.M., Varotto A., Radivojevic I. Chem. Rev. 2009, 109, 1630-1658.
https://doi.org/10.1021/cr8002483
Morisue M., Kobuke Y. Supramolecular Organization of Porphyrins and Phthalocyanines by Use of Biomimetic Coordination Methodology. In: Handbook of Porphyrin Science. Vol. 32. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing, 2014. p. 1-126.
https://doi.org/10.1142/9789814417297_0003
Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Russ. Chem. Rev. 2008, 77, 59-75.
https://doi.org/10.1070/RC2008v077n01ABEH003743
Koifman O.I., Mamardashvili N.Zh. Nanotechnologies in Russia 2009, 4, 253-261.
https://doi.org/10.1134/S1995078009050012
Beletskaya I., Tyurin V.S., Tsivadze A.Y., Guilard R., Stern C. Chem. Rev. 2009, 109, 1659-1713.
https://doi.org/10.1021/cr800247a
Koifman O.I., Ageeva T.A. Polymer Sci. Ser. C 2014, 56, 84-103.
https://doi.org/10.1134/S1811238214010056
Khelevina O.G., Malyasova A.S., Koifman O.I. Russ. J. Gen. Chem. 2020, 90, 1646-1659.
https://doi.org/10.1134/S1070363220090108
Ageeva T.A., Bush A.A., Golubev D.V., Gorshkova A.S., Kamentsev K.E., Koifman O.I., Rumyantseva V.D., Sigov A.S., Fomichev V.V. J. Organomet. Chem. 2020, 922, 121355.
https://doi.org/10.1016/j.jorganchem.2020.121355
Percástegui E.G., Jancik V. Coord. Chem. Rev. 2020, 407, 213165.
https://doi.org/10.1016/j.ccr.2019.213165
Functional Materials Based on Tetrapyrrole Macroheterocyclic Compounds (Koifman O.I., Ed.) М.: LENAND, 2019. 848 p.
Chan K.S., Zhou X., Luo B.S., Mak T.C.W. J. Chem. Soc. Chem. Commun. 1994, 271.
https://doi.org/10.1039/C39940000271
Chan K.S., Zhou X.A., Au M.T., Tam C.Y. Tetrahedron 1995, 51, 3129.
https://doi.org/10.1016/0040-4020(95)00069-K
Hyslop A.G., Kellett M.A., Iovine P.V., Therien M.J. J. Am. Chem. Soc. 1998, 120, 12676.
https://doi.org/10.1021/ja982410h
Ali H., van Lier J.E. Tetrahedron 1994, 50, 11933.
https://doi.org/10.1016/S0040-4020(01)89306-6
Shanmugathasan S., Johnson C.K., Edwards C., Matthews E.K., Dolphin D., Boyle R.W. J. Porphyrins Phthalocyanines 2000, 4, 228.
https://doi.org/10.1002/(SICI)1099-1409(200004/05)4:3<228::AID-JPP199>3.3.CO;2-Z
Chang J.C., Ma C.J., Lee G.H., Peng S.M., Yeh C.Y. Dalton Trans. 2005, 1504.
https://doi.org/10.1039/B417350C
Gauler R., Risch N. Eur. J. Org. Chem. 1998, 1193.
https://doi.org/10.1002/(SICI)1099-0690(199806)1998:6<1193::AID-EJOC1193>3.0.CO;2-K
Sergeeva N.N., Scala A., Bakar M.A., O'Riordan G., O'Brien J., Grassi G., Senge M.O. J. Org. Chem. 2009, 74, 7140.
https://doi.org/10.1021/jo901535c
Santos F.D., Cunha A.C., de Souza M.C.B.V., Tome A.C., Neves M.G.P.M.S., Ferreira V.F., Cavaleiro J.A.S. Tetrahedron Lett. 2008, 49, 7286.
https://doi.org/10.1016/j.tetlet.2008.10.024
Chen Y., Zhang X.P. J. Org. Chem. 2003, 68, 4432.
https://doi.org/10.1021/jo034063m
Takanami T., Hayashi M., Hino F., Suda K. Tetrahedron Lett. 2003, 44, 7353.
https://doi.org/10.1016/S0040-4039(03)01837-9
Khan M.M., Ali H., van Lier J.E. Tetrahedron Lett. 2001, 42, 1615.
https://doi.org/10.1016/S0040-4039(00)02303-0
Gao G.-Y., Chen Y., Zhang X.P. J. Org. Chem. 2003, 68, 6215.
https://doi.org/10.1021/jo034576t
Wang K., Osuka A., Song J. ACS Central Science, 2020, 6, 2159-2178.
https://doi.org/10.1021/acscentsci.0c01300
Gao G.-Y., Chen Y., Zhang X.P. Org. Lett. 2004, 6, 1837.
https://doi.org/10.1021/ol049440b
Gao G.-Y., Ruppel J.V., Allen B., Chen Y., Zhang X.P. J. Org. Chem. 2007, 72, 9060.
https://doi.org/10.1021/jo701476m
Artamkina G.A., Sazonov P.K., Shtern M.M., Grishina G.V., Veselov I.S., Semeikin A.S., Syrbu S.A., Koifman O.I., Beletskaya I.P. Synlett 2008, 45-48.
https://doi.org/10.1055/s-2007-992410
Artamkina G.A., Sazonov P.K., Shtern M.M., Grishina G.V., Veselov I.S., Semeikin A.S., Syrbu S.A., Koifman O.I., Beletskaya I.P. Russ. J. Org. Chem. 2008, 44, 421.
https://doi.org/10.1134/S1070428008030184
Mikhalitsyna E.A., Tyurin V.S., Beletskaya I.P. J. Porphyrins Phthalocyanines 2015, 19, 874.
https://doi.org/10.1142/S1088424615500637
Tyurin V.S., Mikhalitsyna E.A., Semeikin A.S., Beletskaya I.P. Macroheterocycles 2015, 8, 358.
https://doi.org/10.6060/mhc150769b
Polevaya Y.P., Tyurin V.S., Beletskaya I.P. J. Porphyrins Phthalocyanines 2014, 18, 20.
https://doi.org/10.1142/S1088424613500636
Yaschuk Y.P., Tyurin V.S., Beletskaya I.P. Macroheterocycles 2012, 5, 302.
https://doi.org/10.6060/mhc2012.121199b
Locos O.B., Arnold D.P. Org. Biomol. Chem. 2006, 4, 902.
https://doi.org/10.1039/b516989e
Song J., Jang S.Y., Yamaguchi S., Sankar J., Hiroto S., Aratani N., Shin J.Y., Easwaramoorthi S., Kim K.S., Kim D., Shinokubo H., Osuka T. Angew. Chem. Int. Ed. 2008, 47, 6004.
https://doi.org/10.1002/anie.200802026
Mikhalitsyna E.A., Tyurin V.S., Khrustalev V.N., Lonin I.S., Beletskaya I.P. Dalton Trans. 2014, 43, 3563.
https://doi.org/10.1039/c3dt52685b
Mikhalitsyna E.A., Tyurin V.S., Zamilatskov I.A., Khrustalev V.N., Beletskaya I.P. Dalton Trans. 2012, 41, 7624.
https://doi.org/10.1039/c2dt30123g
Ranyuk E.R., Filatov M.A., Averin A.D., Cheprakov A.V., Beletskaya I.P. Synthesis 2012, 44, 393.
https://doi.org/10.1055/s-0031-1289667
Yakushev A.A., Averin A.D., Maloshitskaya O.A., Syrbu S.A., Koifman O.I., Beletskaya I.P. Macroheterocycles 2016, 9, 65.
https://doi.org/10.6060/mhc151206a
Yakushev A.A., Averin A.D., Maloshitskaya O.A., Syrbu S.A., Koifman O.I., Beletskaya I.P. Mendeleev Commun. 2016, 26, 199.
https://doi.org/10.1016/j.mencom.2016.04.006
Averin A.D., Yakushev A.A., Maloshitskaya O.A., Syrbu S.A., Koifman O.I., Beletskaya I.P. Russ. Chem. Bull. 2017, 66, 1456.
https://doi.org/10.1007/s11172-017-1908-3
Yakushev A.A., Averin A.D., Maloshitskaya O.A., Koifman O.I., Syrbu S.A., Beletskaya I.P. Macroheterocycles 2018, 11, 135.
https://doi.org/10.6060/mhc180276a
Yakushev A.A., Chernichenko N.M., Anokhin M.V., Averin A.D., Buryak A.K., Denat F., Beletskaya I.P. Molecules 2014, 19, 940.
https://doi.org/10.3390/molecules19010940
Yakushev A.A., Averin A.D., Sakovich M.V., Vatsouro I.M., Kovalev V.V., Syrbu S.A., Koifman O.I., Beletskaya I.P. J. Porphyrins Phthalocyanines 2019, 23, 1551.
https://doi.org/10.1142/S1088424619501761
Braun A., Tcherniac J. Berichte der Deutschen Chemischen Gesellschaft 1907, 40, 2709-2714.
https://doi.org/10.1002/cber.190704002202
Linstead R. P. J. Chem. Soc. (Resumed) 1934, 1016-1017.
https://doi.org/10.1039/jr9340001016
Berezin B.D. Coordination Compounds of Porphyrins and Phthalocyanine. New York - Toronto: J. Wiley, 1981. 278 p.
Leznoff C.C., Lever A.B.P. In: Phthalocyanines. Properties and Applications (Leznoff C.C., Lever A.B.P., Eds.) New York: VCH, 1989, Vol. 1. 448 p.; 1993, Vol. 2. 305 p.; 1993, Vol. 3. 303 p.; 1996, Vol. 4. 536 p.
Allen C.M., Sharman W.M., Van Lier J.E. J. Porphyrins Phthalocyanines 2001, 5, 161-169.
https://doi.org/10.1002/jpp.324
Walter M.G., Rudine A.B., Wamser C.C. J. Porphyrins Phthalocyanines 2010, 14, 759-792.
https://doi.org/10.1142/S1088424610002689
Wang H., Qi D., Xie Z., Cao W., Wang K., Shang H., Jiang J. Chem. Commun. 2013, 49, 889-891.
https://doi.org/10.1039/C2CC38088A
Fukuda T., Biyajima T., Kobayashi N. J. Am. Chem. Soc. 2010, 132, 6278-6279.
https://doi.org/10.1021/ja100125e
Horii Y., Horie Y., Katoh K., Breedlove B.K., Yamashita M. Inorg. Chem., 2018, 57, 565-574.
https://doi.org/10.1021/acs.inorgchem.7b02124
Wang H., Kobayashi N., Jiang J. Chem. Eur. J. 2012, 18, 1047-1049.
https://doi.org/10.1002/chem.201103037
Korostei Y.S., Tarasova V.G., Pushkarev V.E., Borisova N.E., Vorobiev A.K., Tomilova L.G. Dyes and Pigments 2018, 159, 573-575.
https://doi.org/10.1016/j.dyepig.2018.07.030
Korostei Y.S., Pushkarev V.E., Tolbin A.Y., Dzuban A.V., Chernyak A.V., Konev D.V., Medvedeva T.O., Talantsev A.D., Sanina N.A., Tomilova L.G. Dyes and Pigments 2019, 170, 107648.
https://doi.org/10.1016/j.dyepig.2019.107648
Chen Y., Liu C., Ma F., Qi D., Liu Q., Sun H.-L., Jiang J. Chem. Eur. J. 2018, 24, 8066-8070.
https://doi.org/10.1002/chem.201800408
Pushkarev V.E., Tolbin A.Y., Zhurkin F.E., Borisova N.E., Trashin S.A., Tomilova L.G., Zefirov N.S. Chem. Eur. J. 2012, 18, 9046-9055.
https://doi.org/10.1002/chem.201200361
Korostei Y.S., Tolbin A.Y., Dzuban A.V., Pushkarev V.E., Sedova M.V., Maklakov S.S., Tomilova L.G. Dyes and Pigments 2018, 149, 201-211.
https://doi.org/10.1016/j.dyepig.2017.09.066
Wang K., Qi D., Wang H., Cao W., Li W., Jiang J. Chem. Eur. J. 2012, 18, 15948-15952.
https://doi.org/10.1002/chem.201202888
Balashova I.O., Pushkarev V.E., Shestov V.I., Tomilova L.G., Koifman O.I., Ponomarev G.V. Macroheterocycles 2015, 8, 233-238.
https://doi.org/10.6060/mhc150767p
Tomilova L.G., Pushkarev V.E., Balashova I.O., Shestov V.I., Ponomarev G.V., Koifman O.I., Platonova Y.B., Volov A.N. 2020, Patent RF No 2722309.
Quartarolo A.D., Pérusse D., Dumoulin F., Russo N., Sicilia E. J. Porphyrins Phthalocyanines 2013, 17, 980-988.
https://doi.org/10.1142/S1088424613500569
Yang K., Wang J., Zhao Z., Zhao F., Wang K., Zhang X., Zhang F. Org. Electron. 2020, 83, 105739.
https://doi.org/10.1016/j.orgel.2020.105739
Li W., Liu W., Zhang X., Yan D., Liu F., Zhan C. Macromol. Rapid Commun. 2019, 40, 1900353.
https://doi.org/10.1002/marc.201900353
Kobayashi N., Furuyama T., Satoh K. J. Am. Chem. Soc. 2011, 133, 19642-19645.
https://doi.org/10.1021/ja208481q
Lukyanets E.A., Nemykin V.N. J. Porphyrins Phthalocyanines 2010, 14, 1-40.
https://doi.org/10.1142/S1088424610001799
Kobayashi N., Nakajima S.-I., Ogata H., Fukuda T. Chem. Eur. J. 2004, 10, 6294-6312.
https://doi.org/10.1002/chem.200400275
Muranaka A., Yonehara M., Uchiyama M. J. Am. Chem. Soc. 2010, 132, 7844-7845.
https://doi.org/10.1021/ja101818g
Ince M., Hausmann A., Martínez-Díaz M.V., Guldi D.M., Torres T. Chem. Commun. 2012, 48, 4058-4060.
https://doi.org/10.1039/c2cc30632h
Dubinina T.V., Tomilova L.G., Zefirov N.S. Russ. Chem. Rev. 2013, 82, 865-895.
https://doi.org/10.1070/RC2013v082n09ABEH004353
Dubinina T.V., Trashin S.A., Borisova N.E., Boginskaya I.A., Tomilova L.G., Zefirov N.S. Dyes and Pigments 2012, 93, 1471-1480.
https://doi.org/10.1016/j.dyepig.2011.10.012
Makarov S.G., Suvorova O.N., Litwinski C., Ermilov E.A., Röder B., Tsaryova O., Dülcks T., Wöhrle D. Eur. J. Inorg. Chem. 2007, 2007, 546-552.
https://doi.org/10.1002/ejic.200600843
Dubinina T.V., Ivanov A.V., Borisova N.E., Trashin S.A., Gurskiy S.I., Tomilova L.G., Zefirov N.S. Inorg. Chim. Acta 2010, 363, 1869-1878.
https://doi.org/10.1016/j.ica.2010.02.011
Dubinina T.V., Paramonova K.V., Trashin S.A., Borisova N.E., Tomilova L.G., Zefirov N.S. Dalton Trans. 2014, 43, 2799-2809.
https://doi.org/10.1039/C3DT52726C
Dubinina T.V., Pushkarev V.E., Trashin S., Paramonova K.V., Tomilova L.G. Macroheterocycles 2012, 5, 366-370.
https://doi.org/10.6060/mhc2012.121213d
Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Bürgmann H., Sørum H., Norström M., Pons M.-N., Kreuzinger N., Huovinen P., Stefani S., Schwartz T., Kisand V., Baquero F., Martinez J.L. Nat. Rev. Microbiology 2015, 13, 310-317.
https://doi.org/10.1038/nrmicro3439
Cizmas L., Sharma V.K., Gray C.M., McDonald T.J. Environ. Chem. Lett. 2015, 13, 381-394.
https://doi.org/10.1007/s10311-015-0524-4
Larsson D.G.J. Upsala J. Med. Sci. 2014, 119, 108-112.
https://doi.org/10.3109/03009734.2014.896438
EU Action on Antimicrobial Resistance, https://ec.europa.eu/health/antimicrobial-resistance/eu-action-on-antimicrobial-resistance_en (date of access 20.11.2020).
WHO multi-country survey reveals widespread public misunderstanding about antibiotic resistance, https://www.who.int/en/news-room/detail/16-11-2015-who-multi-country-survey-reveals-widespread-public-misunderstanding-about-antibiotic-resistance (date of access 20.11.2020).
Unceta N., Sampedro M.C., Bakar N.K.A., Gómez-Caballero A., Goicolea M.A., Barrio R.J. J. Chromatogr. A 2010, 1217, 3392-3399.
https://doi.org/10.1016/j.chroma.2010.03.008
Berna M.J., Ackermann B.L., Murphy A.T. Anal. Chim. Acta 2004, 509, 1-9.
https://doi.org/10.1016/j.aca.2003.12.023
Ferrer I., Zweigenbaum J.A., Thurman E.M. J. Chromatogr. A 2010, 1217, 5674-5686.
https://doi.org/10.1016/j.chroma.2010.07.002
Feier B., Gui A., Cristea C., Săndulescu R. Anal. Chim. Acta 2017, 976, 25-34.
https://doi.org/10.1016/j.aca.2017.04.050
Cristea C., Florea A., Tertiș M., Săndulescu R. Immunosensors. In: Biosensors - Micro and Nanoscale Applications (Rinken T., Ed.). IntechOpen, 2015.
Trashin S., Rahemi V., Ramji K., Neven L., Gorun S.M., De Wael K. Nat. Commun. 2017, 8, 16108.
https://doi.org/10.1038/ncomms16108
Khan S.U., Trashin S.A., Korostei Y.S., Dubinina T.V., Tomilova L.G., Verbruggen S.W., De Wael K., ChemPhotoChem 2020, 4, 300-306.
https://doi.org/10.1002/cptc.201900275
Merkel P.B., Kearns D.R. J. Am. Chem. Soc. 1972, 94, 7244-7253.
https://doi.org/10.1021/ja00776a003
Davies M.J. Methods 2016, 109, 21-30.
https://doi.org/10.1016/j.ymeth.2016.05.013
Valduga G., Nonell S., Reddi E., Jori G., Braslavsky S.E. Photochem. Photobiol. 1988, 48, 1-5.
https://doi.org/10.1111/j.1751-1097.1988.tb02778.x
Tanielian C., Wolff C., Esch M. J. Phys. Chem. 1996, 100, 6555-6560.
https://doi.org/10.1021/jp952107s
del Rey B., Keller U., Torres T., Rojo G., Agullo-Lopez F., Nonell S., Marti C., Brasselet S., Ledoux I., Zyss J. J. Am. Chem. Soc. 1998, 120, 12808-12817.
https://doi.org/10.1021/ja980508q
Dubinina T.V., Osipova M.M., Zasedatelev A.V., Krasovskii V.I., Borisova N.E., Trashin S.A., Tomilova L.G., Zefirov N.S. Dyes and Pigments 2016, 128, 141-148.
https://doi.org/10.1016/j.dyepig.2016.01.023
Wilkinson F., Helman W.P., Ross A.B. J. Phys. Chem. Ref. Data 1993, 22, 113-262.
https://doi.org/10.1063/1.555934
Potz R., Goeldner M., Hueckstaedt H., Cornelissen U., Tutass A., Homborg H. ChemInform 2000, 31 (16).
https://doi.org/10.1002/chin.200016159
Nyokong T. Coord. Chem. Rev. 2007, 251, 1707-1722.
https://doi.org/10.1016/j.ccr.2006.11.011
Burtsev I.D., Dubinina T.V., Platonova Y.B., Kosov A.D., Pankratov D.A., Tomilova L.G. Mendeleev Commun. 2017, 27, 466-469.
https://doi.org/10.1016/j.mencom.2017.09.012
Platonova Y.B., Morozov A.S., Burtsev I.D., Korostei Y.S., Ionidi V.Y., Romanovsky B.V., Tomilova L.G. Mendeleev Commun. 2018, 28, 198-199.
https://doi.org/10.1016/j.mencom.2018.03.030
Burtsev I.D., Platonova Y.B., Volov A.N., Tomilova L.G. Polyhedron 2020, 188, 114697.
https://doi.org/10.1016/j.poly.2020.114697
Moiseeva E.O., Platonova Y.B., Konev D.V., Trashin S.A., Tomilova L.G. Mendeleev Commun. 2019, 29, 212-214.
https://doi.org/10.1016/j.mencom.2019.03.033
Novikov R.A., Levina A.A., Borisov D.D., Volodin A.D., Korlyukov A.A., Tkachev Y.V., Platonova Y.B., Tomilova L.G., Tomilov Y.V. Organometallics 2020, 39, 2580-2593.
https://doi.org/10.1021/acs.organomet.0c00113
Burtsev I.D., Platonova Y.B., Volov A.N., Tomilova L.G. Macroheterocycles 2020, 13, 126-129.
https://doi.org/10.6060/mhc200286t
Platonova Y.B., Volov A.N., Tomilova L.G. J. Catalysis 2019, 373, 222-227.
https://doi.org/10.1016/j.jcat.2019.04.003
Platonova Y.B., Volov A.N., Tomilova L.G. Bioorg. Med. Chem. Lett. 2020, 30, 127351.
https://doi.org/10.1016/j.bmcl.2020.127351
Platonova Y.B., Volov A.N., Tomilova L.G. J. Catalysis 2020, 391, 224-228.
https://doi.org/10.1016/j.jcat.2020.08.019
Leyzerovich N.N., Shvedene N.V., Blikova Y.N., Tomilova L.G., Pletnev I.V. Electroanalysis 2001, 13, 246-252.
https://doi.org/10.1002/1521-4109(200103)13:3<246::AID-ELAN246>3.0.CO;2-7
Shvedene N.V., Otkidach K.N., Gumerov M.R., Tarakanov P.A., Tomilova L.G. J. Anal. Chem. 2015, 70, 72-80.
https://doi.org/10.1134/S1061934815010177
Blikova Y.N., Ivanov A.V., Tomilova L.G., Shvedene N.V. Russ. Chem. Bull. 2003, 52, 150-153.
https://doi.org/10.1023/A:1022456601080
Shvedene N.V., Abashev M.N., Arakelyan S.A., Otkidach K.N., Tomilova L.G., Pletnev I.V. J. Solid State Electrochem. 2019, 23, 543-552.
https://doi.org/10.1007/s10008-018-4159-9
Tolbin A.Y., Tomilova L.G. Russ. Chem. Rev. 2011, 80, 531-551.
https://doi.org/10.1070/RC2011v080n06ABEH004198
Shvedene N.V., Otkidach K.N., Ondar E.E., Osipova M.M., Dubinina T.V., Tomilova L.G., Pletnev I.V. J. Anal. Chem. 2017, 72, 95-104.
https://doi.org/10.1134/S1061934817010117
Sheik-Bahae M., Said A.A., Wei T., Hagan D.J., Stryland E.W.V. IEEE J. Quantum Electronics 1990, 26, 760-769.
https://doi.org/10.1109/3.53394
Oluwole D.O., Ngxeke S.M., Britton J., Nyokong T. J. Photochem. Photobiol., A: Chemistry 2017, 347, 146-159.
https://doi.org/10.1016/j.jphotochem.2017.07.032
Sekhosana K.E., Amuhaya E., Nyokong T. Polyhedron 2016, 105, 159-169.
https://doi.org/10.1016/j.poly.2015.12.045
Mgidlana S., Şen P., Nyokong T. J. Mol. Struct. 2020, 1220, 128729.
https://doi.org/10.1016/j.molstruc.2020.128729
Bankole O.M., Osifeko O., Nyokong T. J. Photochem. Photobiol., A: Chemistry 2016, 329, 155-166.
https://doi.org/10.1016/j.jphotochem.2016.06.025
Kuzmina E.A., Dubinina T.V., Borisova N.E., Tarasevich B.N., Krasovskii V.I., Feofanov I., Dzuban A.V., Tomilova L.G. Dyes and Pigments 2020, 174, 108075.
https://doi.org/10.1016/j.dyepig.2019.108075
Kuzmina E.A., Dubinina T.V., Zasedatelev A.V., Baranikov A.V., Makedonskaya M.I., Egorova T.B., Tomilova L.G. Polyhedron 2017, 135, 41-48.
https://doi.org/10.1016/j.poly.2017.06.048
Kuzmina E.A., Dubinina T.V., Dzuban A.V., Krasovskii V.I., Maloshitskaya O.A., Tomilova L.G. Polyhedron 2018, 156, 14-18.
https://doi.org/10.1016/j.poly.2018.08.076
Pan F., Gao S., Chen C., Song C., Zeng F. Mater. Sci. Eng.: R: Reports 2014, 83, 1-59.
https://doi.org/10.1016/j.mser.2014.06.002
Chen Y., Song H., Jiang H., Li Z., Zhang Z., Sun X., Li D., Miao G. Appl. Phys. Lett. 2014, 105, 193502.
https://doi.org/10.1063/1.4901747
Tseng R.J., Huang J., Ouyang J., Kaner R.B., Yang Nano Lett. 2005, 5, 1077-1080.
https://doi.org/10.1021/nl050587l
Kotova M.S., Drozdov K.A., Dubinina T.V., Kuzmina E.A., Tomilova L.G., Vasiliev R.B., Dudnik A.O., Ryabova L.I., Khokhlov D.R. Scientific Reports 2018, 8, 9080.
https://doi.org/10.1038/s41598-018-27332-1
Gonzalez-Anton R., Osipova M.M., Garcia-Hernandez C., Dubinina T.V., Tomilova L.G., Garcia-Cabezon C., Rodriguez-Mendez M.L. Electrochimica Acta 2017, 255, 239-247.
https://doi.org/10.1016/j.electacta.2017.09.168
Martynov A.G., Safonova E.A., Tsivadze A.Y., Gorbunova Y.G. Coord. Chem. Rev. 2019, 387, 325-347.
https://doi.org/10.1016/j.ccr.2019.02.004
Yamashita M. Bull. Chem. Soc. Jpn. 2020, bcsj.20200257.
Sessoli R., Gatteschi D., Caneschi A., Novak M.A. Nature 1993, 365, 141-143.
https://doi.org/10.1038/365141a0
Ishikawa N., Sugita M., Ishikawa T., Koshihara S.-Y., Kaizu Y. J. Am. Chem. Soc. 2003, 125, 8694-8695.
https://doi.org/10.1021/ja029629n
Ishikawa N., Sugita M., Ishikawa T., Koshihara S., Kaizu Y. J. Phys. Chem. B 2004, 108, 11265-11271.
https://doi.org/10.1021/jp0376065
Wang H., Wang B.W., Bian Y., Gao S., Jiang J. Coord. Chem. Rev. 2016, 306, 195-216.
https://doi.org/10.1016/j.ccr.2015.07.004
Ishikawa N., Iino T., Kaizu Y. J. Am. Chem. Soc. 2002, 124, 11440-11447.
https://doi.org/10.1021/ja027119n
Ishikawa N., Otsuka S., Kaizu Y. Angew. Chem. Int. Ed. 2005, 44, 731-3.
https://doi.org/10.1002/anie.200461546
Holmberg R.J., Polovkova M.A., Martynov A.G., Gorbunova Y.G., Murugesu M. Dalton Trans. 2016, 45, 9320-9327.
https://doi.org/10.1039/C6DT00777E
Lan Y., Klyatskaya S., Ruben M., Fuhr O., Wernsdorfer W., Candini A., Corradini V., Lodi Rizzini A., del Pennino U., Troiani F., Joly L., Klar D., Wende H., Affronte M. J. Mater. Chem., C 2015, 3, 9794-9801.
https://doi.org/10.1039/C5TC02011E
Polovkova M.A., Martynov A.G., Birin K.P., Nefedov S.E., Gorbunova Y.G., Tsivadze A.Y. Inorg. Chem. 2016, 55, 9258-9269.
https://doi.org/10.1021/acs.inorgchem.6b01292
Sakaue S., Fuyuhiro A., Fukuda T., Ishikawa N. Chem. Commun. 2012, 48, 5337.
https://doi.org/10.1039/c2cc31125a
Katoh K., Breedlove B.K., Yamashita M. Chem. Sci. 2016, 7, 4329-4340.
https://doi.org/10.1039/C5SC04669F
Sugimoto H., Higashi T., Maeda A., Mori M., Masuda H., Taga T. J. Chem. Soc., Chem. Commun. 1983, 1234-1235.
https://doi.org/10.1039/C39830001234
Maeda A., Sugimoto H. J. Chem. Soc. Faraday Trans. 2 1986, 82, 2019.
https://doi.org/10.1039/f29868202019
Ge J., Qiu Y., Wang H., Su J., Wang P., Chen Z. Chem. - An Asian J. 2020, 15, 3013-3019.
https://doi.org/10.1002/asia.202000655
Ge J.-Y., Wang H.-Y., Li J., Xie J.-Z., Song Y., Zuo J.-L. Dalton Trans. 2017, 46, 3353-3362.
https://doi.org/10.1039/C7DT00298J
Fukuda T., Kuroda W., Ishikawa N. Chem. Commun. 2011, 47, 11686.
https://doi.org/10.1039/c1cc14657b
Katoh K., Horii Y., Yasuda N., Wernsdorfer W., Toriumi K., Breedlove B.K., Yamashita M. Dalton Trans. 2012, 41, 13582-13600.
https://doi.org/10.1039/c2dt31400b
Horii Y., Katoh K., Sugimoto K., Nakanishi R., Breedlove B.K., Yamashita M. Chem. Eur. J. 2019, 3098-3104.
https://doi.org/10.1002/chem.201805368
Morita T., Damjanović M., Katoh K., Kitagawa Y., Yasuda N., Lan Y., Wernsdorfer W., Breedlove B.K., Enders M., Yamashita M. J. Am. Chem. Soc. 2018, 140, 2995-3007.
https://doi.org/10.1021/jacs.7b12667
Tolbin A.Y., Pushkarev V.E., Shulishov E.V., Tomilova L.G. J. Porphyrins Phthalocyanines 2012, 16, 341-350.
https://doi.org/10.1142/S108842461250037X
Horii Y., Katoh K., Breedlove B.K., Yamashita M. Chem. Commun. 2017, 53, 8561-8564.
https://doi.org/10.1039/C7CC03553E
Horii Y., Kishiue S., Damjanović M., Katoh K., Breedlove B.K., Enders M., Yamashita M. Chem. Eur. J. 2018, 24, 4320-4327.
https://doi.org/10.1002/chem.201705378
Martynov A.G., Polovkova M.A., Berezhnoy G.S., Sinelshchikova A.A., Dolgushin F.M., Birin K.P., Kirakosyan G.A., Gorbunova Y. G., Tsivadze A.Y. Inorg. Chem. 2020, 59, 9424-9433.
https://doi.org/10.1021/acs.inorgchem.0c01346
Martynov A.G., Gorbunova Y.G. Polyhedron 2010, 29, 391-399.
https://doi.org/10.1016/j.poly.2009.06.009
Martynov A.G., Gorbunova Y.G., Tsivadze A.Y. Dalton Trans. 2011, 40, 7165-7171.
https://doi.org/10.1039/c1dt10455a
Birin K.P., Gorbunova Y.G., Tsivadze A.Y. Magn. Reson. Chem. 2010, 48, 505-515.
https://doi.org/10.1002/mrc.2612
Gorbunova Y.G., Martynov A.G., Birin K.P., Tsivadze A.Y. Russ. J. Inorg. Chem. 2021, in press.
Wöhrle D., Schnurpfeil G., Makarov S.G., Kazarin A., Suvorova O.N. Macroheterocycles 2012, 5, 191-202.
https://doi.org/10.6060/mhc2012.120990w
The Porphyrin Handbook. Vol. 1-14. (Kadish K.M., Smith K.M., Guilard R., Eds.) San Diego: Academic Press, 2010.
Inabe T., Tajima H. Chem. Rev. 2004, 104, 5503-5534.
https://doi.org/10.1021/cr030649x
Yu D.E.C., Matsuda M., Tajima H., Kikuchi A., Taketsugu T., Hanasaki N., Naito T., Inabe T. J. Mater. Chem. 2009, 19, 718-723.
https://doi.org/10.1039/B814609H
Konarev D.V., Kuzmin A.V., Simonov S.V., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Dalton Trans. 2012, 41, 13841-13847.
https://doi.org/10.1039/c2dt31587d
Konarev D.V., Khasanov S.S., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Inorg. Chem. 2013, 52, 3851-3859.
https://doi.org/10.1021/ic3025364
Konarev D.V., Zorina L.V., Khasanov S.S., Hakimova E.U., Lyubovskaya R.N. New J. Chem. 2012, 36, 48-51.
https://doi.org/10.1039/C1NJ20858F
Konarev D.V., Kuzmin A.V., Faraonov M.A., Ishikawa M., Nakano Y., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Chem. Eur. J. 2015, 21, 1014-1028.
https://doi.org/10.1002/chem.201404925
Konarev D.V., Faraonov M.A., Kuzmin A.V., Khasanov S.S., Nakano Y., Batov M.S., Norko S.I., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. New J. Chem. 2017, 41, 6866-6874.
https://doi.org/10.1039/C7NJ00530J
Konarev D.V., Khasanov S.S., Kuzmin A.V., Nakano Y., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Cryst. Growth Des. 2017, 17, 753-762.
https://doi.org/10.1021/acs.cgd.6b01612
Konarev D.V., Kuzmin A.V., Khasanov S.S., Batov M.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. CrystEngComm 2018, 20, 385-401.
https://doi.org/10.1039/C7CE01918A
Konarev D.V., Kuzmin A.V., Batov M.S., Khasanov S.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. ACS Omega 2018, 3, 14875-14888.
https://doi.org/10.1021/acsomega.8b02221
Konarev D.V., Kuzmin A.V., Nakano Y., Faraonov M.A., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Inorg. Chem. 2016, 55, 1390-1402.
https://doi.org/10.1021/acs.inorgchem.5b01906
Konarev D.V., Kuzmin A.V., Fatalov A.M., Khasanov S.S., Yudanova E.I., Lyubovskaya R.N. Chem. Eur. J. 2018, 24, 8415-8423.
https://doi.org/10.1002/chem.201800873
Konarev D.V., Zorina L.V., Khasanov S.S., Shestakov A.F., Fatalov A.M., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Inorg. Chem. 2018, 57, 583-589.
https://doi.org/10.1021/acs.inorgchem.7b02351
Konarev D.V., Kuzmin A.V., Shestakov A.F., Khasanov S.S., Lyubovskaya R.N. Dalton Trans. 2019, 48, 4961-4972.
https://doi.org/10.1039/C9DT00655A
Konarev D.V., Kuzmin A.V., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Eur. J. Inorg. Chem. 2016, 4099-4103.
https://doi.org/10.1002/ejic.201600680
Konarev D.V., Kuzmin A.V., Nakano Y., Khasanov S.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Dalton Trans. 2018, 47, 4661-4671.
https://doi.org/10.1039/C8DT00459E
Konarev D.V., Kuzmin A.V., Khasanov S.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Inorg. Chim. Acta 2020, 510, 119732.
https://doi.org/10.1016/j.ica.2020.119732
Konarev D.V., Troyanov S.I., Kuzmin A.V., Nakano Y., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Organometallics 2015, 34, 879-889.
https://doi.org/10.1021/om501210s
Kubiak R., Janczak J. J. Alloys Compd. 1992, 189, 107-111.
https://doi.org/10.1016/0925-8388(92)90054-D
Janczak J., Kubiak R. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003, 59, m237-m240.
https://doi.org/10.1107/S0108270103009417
Janczak J., Kubiak R., Śledź M., Borrmann H., Grin Y. Polyhedron 2003, 22, 2689-2697.
https://doi.org/10.1016/S0277-5387(03)00361-9
Janczak J., Kubiak R. Inorg. Chim. Acta 2003, 342, 64-76.
https://doi.org/10.1016/S0020-1693(02)01060-5
Konarev D.V., Khasanov S.S., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Chem. Asian J. 2017, 12, 910-919.
https://doi.org/10.1002/asia.201700138
Zhou W., Thompson J.R., Leznoff C.C., Lez D.B. Chem. Eur. J. 2017, 23, 2323-2331.
https://doi.org/10.1002/chem.201604155
Hiroto S., Furukawa K., Shinokubo H., Osuka A. J. Am. Chem. Soc. 2006, 128, 12380-12381.
https://doi.org/10.1021/ja062654z
Wong E.W.Y., Leznoff D.B. J. Porphyrins Phthalocyanines 2012, 16, 154-162.
https://doi.org/10.1142/S1088424611004440
Konarev D.V., Zorina L.V., Khasanov S.S., Lyubovskaya R.N. Dalton Trans. 2012, 41, 9170-9175.
https://doi.org/10.1039/C1DT11040C
Konarev D.V., Karimov D.R., Khasanov S.S., Shestakov A.F., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Dalton. Trans. 2017, 46, 13994-14001.
https://doi.org/10.1039/C7DT02901B
Konarev D.V., Khasanov S.S., Kumin A.V., Nakano Y., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Inorg. Chem. 2017, 56, 1804-1813.
https://doi.org/10.1021/acs.inorgchem.6b01932
Kitagawa T., Lee Y., Takeuchi K. Chem. Commun. 1999, 1529-1530.
https://doi.org/10.1039/a903911b
Ishikawa N. Phthalocyanine-based Magnets. In: Functional Phthalocyanine Molecular Materials. Vol. 135. (Jiang J., Ed.) Berlin: Struct. Bonding, 2010. p. 211-228.
https://doi.org/10.1007/978-3-642-04752-7_7
Barraclough C.G., Martin R.L., Mitra S., Sherwood R.C. J. Chem. Phys. 1970, 53, 1638-1642.
https://doi.org/10.1063/1.1674236
Barraclough C.G., Gregson A.K., Mitra S. J. Chem. Phys. 1974, 60, 962-968.
https://doi.org/10.1063/1.1681174
Mitra S., Gregson A.K., Hatfield W., Weller R. Inorg. Chem. 1983, 22, 1729-1732.
https://doi.org/10.1021/ic00154a007
Evangelisti M., Bartolome J., de Jongh L.J., Filoti G. Phys. Rev. B 2002, 66, 144410.
https://doi.org/10.1103/PhysRevB.66.144410
Korepanov V.I., Sedlovets D.M. Macroheterocycles 2019, 12, 232-243.
https://doi.org/10.6060/mhc190864s
Giménez-Agulló N., de Pipaón C.S., Adriaenssens L., Filibian M., Martínez-Belmonte M., Escudero-Adán E.C., Carretta P., Ballester P., Galán-Mascarós J.R. Chem. Eur. J. 2014, 20, 12817-12825.
https://doi.org/10.1002/chem.201402869
Zhang P., Guo Y.-N., Tang J. Coord. Chem. Rev. 2013, 257, 1728-1763.
https://doi.org/10.1016/j.ccr.2013.01.012
Magnani N. Int. J. Quantum Chemistry 2014, 114, 755-759.
https://doi.org/10.1002/qua.24656
Kan J., Wang H., Sun W., Cao W., Tao J., Jiang J. Inorg. Chem. 2013, 52, 8505-8510.
https://doi.org/10.1021/ic400485y
Wang K., Zeng S., Wang H., Dou J., Jiang J. Inorg. Chem. Front. 2014, 1, 167-171.
https://doi.org/10.1039/c3qi00097d
Lomova T.N. Axially Coordinated Metalloporphyrins in Science and Application. Moscow: URSS, 2018. 700 p.
Beltran-Lopez J.F., Sazatornil M., Palacios E., Burriel R. J. Therm. Anal. Calorim. 2016, 125, 579-583.
https://doi.org/10.1007/s10973-016-5268-2
Liu J.-L., Chen Y.-C., Guo F.-S., Tong M.-L. Coord. Chem. Rev. 2014, 281, 26-49.
https://doi.org/10.1016/j.ccr.2014.08.013
Ishikawa N., Sugita M., Wernsdorfer W. Angew. Chem. Int. Ed. 2005, 44, 2931-2935.
https://doi.org/10.1002/anie.200462638
Sharples J.W., Collison D. Polyhedron SI 2013, 66, 15-27.
https://doi.org/10.1016/j.poly.2013.08.005
Korolev V.V., Korolev D.V., Lomova T.N., Mozhzhukhina E.G., Zakharov A.G. Russ. J. Phys. Chem. A 2012, 86, 504-508.
https://doi.org/10.1134/S0036024412030181
Korolev V.V., Romanov A.S., Arefyev I.M. Russ. J. Phys. Chem. A 2006, 80, 464-466.
https://doi.org/10.1134/S0036024406030277
Korolev V.V., Korolev D.V., Ramazanova A.G. J. Therm. Anal. Calorim. 2019, 136, 937-941.
https://doi.org/10.1007/s10973-018-7704-y
Korolev V.V., Klyueva M.E., Arefyev I.M., Ramazanova A.G., Lomova T.N., Zakharov A.G. Macroheterocycles 2008, 1, 68-71.
https://doi.org/10.6060/mhc2008.1.68
Klyueva M.E., Korolev V.V., Arefyev I.M., Lomova T.N. J. Porphyrins Phthalocyanines 2008, 12, 584.
Korolev V.V., Aref'ev I.M., Lomova T.N., Klyueva M.E., Zakharov A.G., Korolev D.V. Russ. J. Phys. Chem. A 2010, 84, 1631-1635.
https://doi.org/10.1134/S0036024410090335
Korolev V.V., Aref'ev I.M., Lomova T.N., Ovchenkova E.N., Klyueva M.E., Zakharov A.G., Korolev D.V. Russ. J. Phys. Chem. A 2012, 86, 1165-1170.
https://doi.org/10.1134/S0036024412070102
Lomova T.N., Korolev V.V., Ramazanova A.G., Ovchenkova E.N. J. Porphyrins Phthalocyanines 2015, 19, 1262-1269.
https://doi.org/10.1142/S1088424615501114
Korolev V.V., Lomova T.N., Ramazanova A.G., Mozhzhukhina E.G. Synth. Met. 2016, 220, 502-507.
https://doi.org/10.1016/j.synthmet.2016.07.026
Korolev V.V., Lomova T.N., Ramazanova A.G., Mozhzhukhina E.G. Mend. Commun. 2016, 26, 301-303.
https://doi.org/10.1016/j.mencom.2016.07.011
Korolev V.V., Lomova T.N., Ramazanova A.G., Korolev D.V., Mozhzhukhina E.G. J. Organomet. Chem. 2016, 819, 209-215.
https://doi.org/10.1016/j.jorganchem.2016.07.002
Lomova T.N., Korolev V.V., Bichan N.G., Ovchenkova E.N., Ramazanova A.G., Balmasova O.V., Gruzdev M.S. Synth. Met. 2019, 253, 116-121.
https://doi.org/10.1016/j.synthmet.2019.05.004
Korolev V.V., Lomova T.N., Ramazanova A.G. Radioelektr. Nanosistem. Inform. Tekhnol. [Radio Electronics. Nanosystems. Information Technology] 2019, 11, 199-216 (in Russ.).
Korolev V.V., Lomova T.N., Maslennikova A.N., Korolev D.V., Shpakovsky D.B., Zhang J., Milaeva E.R. J. Magn. Magn. Mater. 2016, 401, 86-90.
https://doi.org/10.1016/j.jmmm.2015.10.014
Miller J.S., Calabrese J.C., McLean R.S., Epstein A.J. Adv. Mater. 1992, 4, 498-501.
https://doi.org/10.1002/adma.19920040710
Miller J.S., Vazquez C., Calabrese J.C., McLean R.S., Epstein A.J. Adv. Mater. 1994, 6, 217-221.
https://doi.org/10.1002/adma.19940060306
Böhm A., Vazquez C., McLean R.S., Calabrese J.C., Kalm S.E., Manson J.L., Epstein A.J., Miller J.S. Inorg. Chem. 1996, 35, 3083-3088.
https://doi.org/10.1021/ic9516267
Brandon E.J., Arif A.M., Burkhart B.M., Miller J.S. Inorg. Chem. 1998, 37, 2792-2798.
https://doi.org/10.1021/ic9710768
Zhang Y.J. Alloys and Compounds 2019, 787, 1173-1186.
https://doi.org/10.1016/j.jallcom.2019.02.175
Ovchenkova E.N., Bichan N.G., Tsaturyan A.A., Kudryakova N.O., Gruzdev M.S., Gostev F.E., Shelaev I.V., Nadtochenko V.A., Lomova T.N. J. Phys. Chem. C 2020, 124, 4010-4023.
https://doi.org/10.1021/acs.jpcc.9b11661
Andreenko A.S., Belov K.P., Nikitin S.A. Uspehi fizicheskih nauk 1989, 158, 553-579. (in Russ.).
https://doi.org/10.3367/UFNr.0158.198908a.0553
Milaeva E.R., Gerasimova O.A., Zhang J., Shpakovsky D.B., Syrbu S.A., Semeykin A.S., Koifman O.I., Kireeva E.G., Shevtsova E.F., Bachurin S.O., Zefirov N.S. J. Inorg. Biochem. 2008, 102, 1348-1358.
https://doi.org/10.1016/j.jinorgbio.2008.01.022
Stuzhin P.A., Hamdush M., Ziener U. Inorg. Chim. Acta 1995, 236, 131-139.
https://doi.org/10.1016/0020-1693(95)04633-K
Edwards W.D., Weiner B., Zerner M.C. J. Phys. Chem. 1988, 92, 6188-6197.
https://doi.org/10.1021/j100333a006
Korolev D.V. Abstract of the Candidate's Dissertation in Chemistry. Ivanovo: G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 2012. 16 p.
Lomova T.N., Korolev V.V., Zakharov A.G. Mater. Sci. Eng. B 2014, 186, 54-63.
https://doi.org/10.1016/j.mseb.2014.03.006
Anikin M.S., Tarasov E.N., Kudrevatykh N.V., Osadchenko V.H., Zinin A.V. Acta Phys. Pol., A 2015, 127, 635-637.
https://doi.org/10.12693/APhysPolA.127.635
Piskorsky P., Korolev D.V., Valeev R.A., Morgunov R.B., Kunitsyna E.I. Physics and Engineering of Permanent Magnets (Kablov E.N., Ed.) Moscow: VIAM, 2018. 392 p. (in Russ.).
Bichan N.G., Ovchenkova E.N., Gruzdev M.S., Lomova T.N. Zh. Strukt. Khimii [Russ. J. Struct. Chem.] 2018, 59, 734-741.
https://doi.org/10.26902/JSC20180332
Lomova T.N., Korolev V.V., Ramazanova A.G., Balmasova O.V., Mozhzhukhina E.G. XIII Intern. Conf. «Synthesis and Applications of Porphyrins and Their Analogs» (ICPC-13), Ivanovo: Ivanovo State University of Chemistry and Technology, 2019. p. 125.
Lomova T.N., Andrianova L.G., Berezin B.D. Zh. Fiz. Khim. 1987, 61, 2921-2928.
Korolev V.V., Lomova T.N., Ramazanova A.G., Balmasova O.V., Mozhzhukhina E.G. J. Porphyrins Phthalocyanines 2019, 23, 1110-1117.
https://doi.org/10.1142/S1088424619501220
Gurek A.G., Basova T., Luneau D., Lebrun C., Kol'tsov E., Hassan A.K., Ahsen V. Inorg. Chem. 2006, 45, 1667-1676.
https://doi.org/10.1021/ic051754n
Tishin A.M., Spichcin Y.I. The Magnetocaloric Effect and Its Applications, Institute of Physics Publishing, Bristol and Philadelphia, 2003. 476 p.
https://doi.org/10.1887/0750309229
Korolev D.V., Korolev V.V., Lomova T.N., Mozhzhukhina E.G., Zakharov A.G. IV Regional Conference of Young Scientists Theoretical and Experimental Chemistry of Liquid-phase Systems (Krestovsky reading) Ivanovo: G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 2010. p. 28 (in Russ.).
Kudrevatykh N.V., Volegov A.S. Magnetism of Rare Earth Metals and Their Intermetallic Compounds. Yekaterinburg, 2015, 198 p. (in Russ.) [Кудреватых Н.В., Волегов А.С. Магнетизм редкоземельных металлов и их интерметаллических соединений. Екатеринбургб 2015. 198 с.].
Shultz D.A., Sandberg K.A. J. Phys. Org. Chem. 1999, 12, 10-18.
https://doi.org/10.1002/(SICI)1099-1395(199901)12:1<10::AID-POC85>3.0.CO;2-G
Xiang L.C., Liu Q., Guo C.-C., Tan Z. J. Porphyrins Phthalocyanines 2010, 14, 825-831.
https://doi.org/10.1142/S1088424610002665
Mironov A.F. Macroheterocycles 2011, 4, 186-208.
https://doi.org/10.6060/mhc2011.3.08
Yoon I., Demberelnyamba D., Li J.Z., Shim Y.K. In: Handbook of Porphyrin Science. Vol. 33. (Kadish K.M., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co Pte Ltd, 2014. p. 167.
https://doi.org/10.1142/9789814417297_0010
Oluwole D., Yagodin A.V., Britton J., Martynov A.G., Gorbunova Y.G., Tsivadze A.Yu., Nyokong T. Dalton Trans. 2017, 46, 16190-16198.
https://doi.org/10.1039/C7DT03867D
Lan Y., Klyatskaya S., Ruben M. In: Lanthanides and Actinides in Molecular Magnetism (Layfeld R.A., Murugesu M., Eds.) Wiley-VCH Verlag GmbH & Co. KGaA, 2015. p. 223.
https://doi.org/10.1002/9783527673476.ch8
Damjanovic' M., Morita T., Katoh K. Yamashita M., Enders M. Chem. Eur. J. 2015, 21, 14421-14432.
https://doi.org/10.1002/chem.201501944
Bryant D.A., Hunter C.N., Warren M.J. J. Biol. Chem. 2020, 295, 6888-6925.
https://doi.org/10.1074/jbc.REV120.006194
Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., Grätzel M. Nat. Chem. 2014, 6, 242-247.
https://doi.org/10.1038/nchem.1861
La Rosa M., Payne E.H., Credi A. ChemistryOpen 2020, 9, 200-213.
https://doi.org/10.1002/open.201900336
Lemon C.M., Karnas E., Han X., Bruns O.T., Kempa T.J., Fukumura D., Bawendi M.G., Jain R.K., Duda D.G., Nocera J. Am. Chem. Soc. 2015, 137, 9832-9842.
https://doi.org/10.1021/jacs.5b04765
Zenkevich E.I., Gaponenko S.V., Sagun E.I., von Borczyskowski C. Reviews in Nanoscience and Nanotechnology (Chen W., Zhao Y., Juzenas P., Eds.) USA: American Scientific Publishers, 2013, 2(3). p. 184-207.
https://doi.org/10.1166/rnn.2013.1030
Jeong Y.-H., Son M., Yoon H., Kim P., Lee D.-H., Kim D., Jang W.-D. Angew. Chem. Int. Ed. 2014, 53, 6925-6928.
https://doi.org/10.1002/anie.201400835
Shao S., Rajendiran V., Jonathan F., Lovell J.F. Coord. Chem. Rev. 2019, 379, 99-120.
https://doi.org/10.1016/j.ccr.2017.09.002
Zenkevich E.I., von Borczyskowski C. Formation Principles and Excited States Relaxation in Self-Assembled Complexes: Multiporphyrin Arrays and "Semiconductor CdSe/ZnS Quantum Dot-Porphyrin" Nanocomposites. In: Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Vol. 22 - Biophysical and Physicochemical Studies of Tetrapyrroles (Kadish K., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2012. p. 67-168.
https://doi.org/10.1142/9789814397605_0006
Fukuzumi S., Lee Y.-M., Nam W. ChemPhotoChem 2018, 2, 121-135.
https://doi.org/10.1002/cptc.201700146
Hood D., Sahin T., Parkes-Loach P.S., Jiao J., Harris Michelle A., Dilbeck P., Niedzwiedzki D.M., Kirmaier C., Loach P.A., Bocian D.F., Lindsey J.S., Holten D. ChemPhotoChem 2018, 2, 300-313.
https://doi.org/10.1002/cptc.201700182
Lee H., Hong K.I., Jang W.D. Coord. Chem. Rev. 2018, 354, 46-73.
https://doi.org/10.1016/j.ccr.2017.06.008
Khadria A., Fleischhauer J., Boczarow I., Wilkinson J.D., Kohl M.M., Anderson H.L. Science 2018, 4, 153-16.
https://doi.org/10.1016/j.isci.2018.05.015
Huang W.B., Gu W., Huang H.X., Wang J.B., Shen W.X., Lv Y.Y., Shen J. Dyes and Pigments 2017, 143, 427-435.
https://doi.org/10.1016/j.dyepig.2017.05.001
Gaponenko S.V., Demir H.V. Applied Nanophotonics. Cambridge: Cambridge University Press, 2018.
https://doi.org/10.1017/9781316535868
Pal K. Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications. USA: Jenny Stanford Publishing, 1st Edit., 2019. 412 p.
https://doi.org/10.1201/9780429000966
Pleus R.C., Murashov V. Physico-Chemical Properties of Nanomaterials. USA: Pan Stanford, 2018. 338 p.
https://doi.org/10.1201/9781351168601
Petersen N.O. Foundations for Nanoscience and Nanotechnology. London: CRC Press, 2017.
https://doi.org/10.1201/9781315381381
Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics (Zenkevich E., von Borczyskowski C., Eds.) Singapore: Pan Stanford, 2016. 408 p.
Liu M., Voznyy O., Sabatini R., García de Arquer F.P., Munir R., Balawi A.H., Lan X., Fan F., Walters G., Kirmani A.R., Hoogland S., Laquai F., Amassian A., Sargent E.H. Nat. Mater. 2017, 16, 258-263.
https://doi.org/10.1038/nmat4800
Safi M., Domitrovic T., Kapur A., Zhan N., Aldeek F., Johnson J.E., Mattoussi H. Bioconjugate Chem. 2017, 28, 64−74.
https://doi.org/10.1021/acs.bioconjchem.6b00609
Kundu S., Patra A. Chem. Rev. 2017, 117, 712-757.
https://doi.org/10.1021/acs.chemrev.6b00036
Sayevich V., Guhrenz C., Dzhagan V.M., Sin M., Werheid M., Cai B., Borchardt L., Widmer J., Zahn D.R.T., Brunner E., Lesnyak V., Gaponik N., Eychmueller A. ACS Nano 2017, 11, 1559-157.
https://doi.org/10.1021/acsnano.6b06996
Kovalenko M.V., Manna L., Cabot, Hens Z., Talapin D.V., Kagan C.R., Klimov V.I., Rogach A.L., Reiss P., Milliron D.J., Guyot-Sionnnest P., Konstantatos G., Parak W.J., Hyeon T., Korgel B.A., Murray C.B., Heiss W. ACS Nano 2015, 9, 1012-1057.
https://doi.org/10.1021/nn506223h
Orlova A.O., Gromova Yu.A., Maslov V.G., Prudnikau A.V., Artemyev M.V., Fedorov A.V., Baranov A.V. J. Applied Phys. 2013, 113, 214305.
https://doi.org/10.1063/1.4809645
Wolfbeis O.S. Chem. Soc. Rev. 2015, 44, 4743-4768.
https://doi.org/10.1039/C4CS00392F
McBride J.R, Pennycook T.J., Pennycook S.J., Rosenthal S.J. ACS Nano 2013, 7, 8358-8365.
https://doi.org/10.1021/nn403478h
Stupak A., Blaudeck T., Zenkevich E., Krause S., von Borczyskowski C. Phys. Chem. Chem. Phys. 2018, 20, 18579-18600.
https://doi.org/10.1039/C8CP02846J
Plehn T., Ziemann D., May V. Phys. Chem. Chem. Phys. 2018, 20, 26870-26884.
https://doi.org/10.1039/C8CP03978J
Boles M.A., Ling D., Hyeon T., Talapin D.V. Nat. Mater. 2016, 15, 141-153.
https://doi.org/10.1038/nmat4526
Duim H., Fang H.-H., Adjokatse S., ten Brink G.H., Marques M.A.L., Kooi B.J., Blake G.R., Botti S., Loi1 M.A. Appl. Phys. Rev. 2019, 6, 031401.
https://doi.org/10.1063/1.5088342
Zeng B., Palui G., Zhang C., Zhan N., Wang W., Ji X., Chen B., Mattoussi H. Chem. Mater. 2018, 30, 225−238.
https://doi.org/10.1021/acs.chemmater.7b04204
Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C., Bulovi V. ACS Nano 2014, 8, 5863-5872.
https://doi.org/10.1021/nn500897c
Kilin D.S., Tsemekham K., Zenkevich E.I., Prezho O.V. von Borczyskowski C. J. Photochem. Photobiol. A 2007, 190, 342-351.
https://doi.org/10.1016/j.jphotochem.2007.02.017
Voznyy O. J. Phys. Chem. C 2011, 115, 15927-15932.
https://doi.org/10.1021/jp205784g
Kilina S.V., Tamukong P.K., Kilin D.S. Acc. Chem. Res. 2016, 49, 2127−2135.
https://doi.org/10.1021/acs.accounts.6b00196
Zenkevich E., Shulga A., Cichos F., Petrov E.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. B 2005, 109, 8679-8692.
https://doi.org/10.1021/jp040595a
Blaudeck T., Zenkevich E.I., Cichos F., von Borczyskowski C. J. Phys. Chem. C 2008, 112, 20251-20257.
https://doi.org/10.1021/jp8074817
Blaudeck T., Zenkevich E.I., Abdel-Mottaleb M., Szwaykowska K., Kowerko D., Cichos F., von Borczyskowski C. ChemPhysChem 2012, 13, 959-972.
https://doi.org/10.1002/cphc.201100711
Zenkevich E.I., Blaudeck T., Kowerko D., Stupak A.P., Cichos F., von Borczyskowski C. Macroheterocycles 2012, 5, 98-114.
https://doi.org/10.6060/mhc2012.120571z
Zhong C., Sangwan V.K., Kang J., Luxa J., Sofer Z., Hersam M.C., Weiss E.A. J. Phys. Chem. Lett. 2019, 10, 493−499.
https://doi.org/10.1021/acs.jpclett.8b03543
Raevskaya A., Rozovik O., Novikova A., Selyshchev O., Stroyuk O., Dzhagan V., Goryacheva I., Gaponik N., Zahn D.R.T., Eychmüller A. RSC Adv. 2018, 8, 7550-7557.
https://doi.org/10.1039/C8RA00257F
Pong B.-K., Trout B.L., Lee J.-Y. Langmuir 2008, 24, 5270-5276.
https://doi.org/10.1021/la703431j
Schapotschnikow P., Hommersom B., Vlugt T.J.H. J. Phys. Chem. C 2009, 113, 12690-12698.
https://doi.org/10.1021/jp903291d
Kowerko D., Krause S., Amecke N., Abdel-Mottaleb M., Schuster J. von Borczyskowski C. Int. J. Mol. Sci. 2009, 10, 5239-5256.
https://doi.org/10.3390/ijms10125239
Kowerko D., Schuster J., Amecke N., Abdel-Mottaleb M., Dobrawa R., Würthner F., von Borczyskowski C. Phys. Chem. Chem. Phys. 2010, 12, 4112-4123.
https://doi.org/10.1039/b910308b
Chernook A.V., Shulga A.M., Zenkevich E.I., Rempel U., von Borczyskowski C. J. Phys. Chem. 1996, 100, 1918-1926.
https://doi.org/10.1021/jp951108h
Chernook A.V., Rempel U., von Borczyskowski C., Zenkevich E.I., Shulga A.M. Chem. Phys. Lett. 1996, 254, 229-241.
https://doi.org/10.1016/0009-2614(96)00244-8
Lecture Notes in Nanoscale Science and Technology. Core/Shell Quantum Dots. Synthesis, Properties and Devices Vol. 18. (Tong X., Wang Z.M., Eds.) Switzerland: Springer Nature AG. 2020.
https://doi.org/10.1007/978-3-030-46596-4
Zhang C., Jin Z., Zeng B., Wang W., Palui G., Mattoussi H. J. Phys. Chem. B 2020, 124, 4631−4650.
https://doi.org/10.1021/acs.jpcb.0c02177
Stroyuk O., Raievska O., Zahn D.R.T. Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots. In: Lecture Notes in Nanoscale Science and Technology. Core/Shell Quantum Dots. Synthesis, Properties and Devices. Vol. 18. (Tong X., Wang Z.M., Eds.) Switzerland: Springer Nature AG, 2020. p. 67−122.
https://doi.org/10.1007/978-3-030-46596-4_3
Agranovich V.M., Galanin M.D. Electronic Excitation Energy Transfer in Condensed Matter. Amsterdam, New York: North-Holland Pub. Co., 1982. 371 p.
Zenkevich E.I., Sagun E.I., Shulga A.M., Knyukshto V.N., Yarovoi A.A., Stupak A.P., von Borczyskowski C. Opt. Spectrosc. 2007, 103, 998−1009.
https://doi.org/10.1134/S0030400X0712020X
Klimov V. Nanocrystall Quantum Dots. Washington: CRS Press LLC, 2010.
Dabbousi B.O., Redriguez-Vejo J., Mikulec F.V., Heine J.R., Mattousi H., Ober R., Jensen K.F., Bawendi M.G. J. Phys. Chem. B 1997, 101, 9463−9475.
https://doi.org/10.1021/jp971091y
Zenkevich E.I., Blaudeck Th., Heidernätsch M., Cichos F., von Borczyskowski C. Theor. Exper. Chem. 2009, 45, 23-34.
https://doi.org/10.1007/s11237-009-9058-9
Zenkevich E.I., Stupak A.P., Kowerko D., von Borczyskowski C. Chem. Phys. 2012, 406, 21−29.
https://doi.org/10.1016/j.chemphys.2012.02.008
Zenkevich E., Stupak A., Göhler C., Krasselt C., von Borczyskowski C. ACS Nano 2015, 9, 2886−2903.
https://doi.org/10.1021/nn506941c
Inerbaev T.M., Masunov A.E., Khondaker S.I., Dobrinescu A., Plamadă A.-V., Kawazoe Y. J. Chem. Phys. 2009, 131, 044106.
https://doi.org/10.1063/1.3135193
Kilina S., Kilin D., Tretiak S. Chem. Rev. 2015, 115, 5929-5978.
https://doi.org/10.1021/acs.chemrev.5b00012
Dayal S., Burda C. J. Am. Chem. Soc. 2007, 129, 7977−7981.
https://doi.org/10.1021/ja071457c
Liptay T.J., Ram R.J. Appl. Phys. Lett. 2006, 89, 223132.
https://doi.org/10.1063/1.2400107
De Mello Donegá. Nanoparticles. Berlin, Heidelberg: Springer-Verlag, 2014.
https://doi.org/10.1007/978-3-662-44823-6
Fischer T., Heinrich K., Spudat C., Martin J., Otto T., Gessner T., Kroll L. Microelectron. Eng. 2015, 146, 57−61.
https://doi.org/10.1016/j.mee.2015.03.064
Möbius M., Ma X.-Y., Martin J., Doty M.F., Otto T., Gessner T. Proc. SPIE 2015, 9370, 93701X.
https://doi.org/10.1117/12.2185047
Möbius M., Martin J., Hartwig M., Baumann R.R., Otto T., Gessner T. AIP Adv. 2016, 6, 085309.
https://doi.org/10.1063/1.4961145
Korten T., Nitzsche B., Gell C., Ruhnow F., Leduc C., Diez S. Fluorescence Imaging of Single Kinesin Motors on Immobilized Microtubules. In: Methods in Molecular Biology (Single Molecule Analysis) Vol. 783. (Peterman E., Wuite G., Eds.) Springer Protocols: Humana Press, 2011. p. 121-137.
https://doi.org/10.1007/978-1-61779-282-3_7
Korten S., Albet-Torres N., Paderi F., ten Siethoff L., Diez S., Korten T., te Kronnie G., Månsson A. Lab Chip 2013, 13, 866-876.
https://doi.org/10.1039/c2lc41099k
Selyshchev O., Dzhagan V., Zenkevich E., Stroyuk A., Raevskaya A., Sheinin V., Kulikova O., Koifman O., Zahn D.R.T. Electronic Interaction Between Ag-In-S, Ag-In-S/ZnS Quantum Dots and Quaternary Amine Aromatic Molecules - A Photoluminescence Quenching Study. In: Book of Abstracts of the 14th International Symposium on Functional π-Electron Systems (June 2-7) 2019, Berlin. p. #106.
Sheinin V., Kulikova O., Zenkevich E., Selyshchev O., Dzhagan V., Stroyuk A., Raevskaya A., Koifman O., Zahn D.R.T. Tetra(N-methyl-4-pyridyl)porphyrin Sonde Report on the Surface of AIS/ZnS/GSH Quantum Dots in Water. In: Book of Abstr. of the 1st International Conference on Noncovalent Interactions (2-6 September) 2019, Lisbon. p. P82.
Zenkevich E., Sheinin V., Kulikova O., Selyshchev O., Dzhagan V., Stroyuk O., Raievska O., Koifman O., von Borczyskowski C., Zahn D.R.T. Self-Assembled Nanocomposites Based on Semiconductor Quantum Dots and Porphyrin Molecules: Interface Chemistry, Optical Properties and Energy Relaxation Processes. In: Book of Abstracts of Webinar on Materials Science and Nanotechnology. Coalesce Research Group, 33 Market Point Dr., Greenwille SC 29607, USA (July 29-30) 2020. p. 11.
Carella A., Borbone F., Centore R. Front. Chem. 2018, 6, 481.
https://doi.org/10.3389/fchem.2018.00481
Arooj Q., Wilson G.J., Wang F. Materials 2019, 12, 4024.
https://doi.org/10.3390/ma12244024
Iftikhar H., Sonai G.G., Hashmi S.G., Nogueira A.F., Lund P.D. Materials 2019, 12, 1998.
https://doi.org/10.3390/ma12121998
Widhiyanuriyawan D., Trihutomo P., Soeparman S., Yuliati L. Scientific World Journal 2020, 2020, 7910702.
https://doi.org/10.1155/2020/7910702
Koyyada G., Chitumalla R.K., Thogiti S., Kim J.H., Jang J., Chandrasekharam M., Jung J.H. Molecules 2019, 24, 3554.
https://doi.org/10.3390/molecules24193554
Luceño-Sánchez J.A., Díez-Pascual A.M., Capilla R.P. Int. J. Mol. Sci. 2019, 20, 976.
https://doi.org/10.3390/ijms20040976
Ezhov A.V., Vyalba F.Yu., Zhdanova K.A., Mironov A.F., Zhizhin K.Yu., Bragina N.A. Fine Chemical Technologies 2018, 13(2), 21-30. (in Russ.).
https://doi.org/10.32362/2410-6593-2018-13-2-21-30
Longo C., De Paoli M.-A. J. Braz. Chem. Soc. 2003, 14(6), 889-901.
https://doi.org/10.1590/S0103-50532003000600005
Ezhov A.V., Zhdanova K.A., Bragina N.A., Mironov A.F. Macroheterocycles 2016, 9(4), 337-352.
https://doi.org/10.6060/mhc160752e
Vittal R., Ho K.-C. Renewable and Sustainable Energy Reviews 2017, 70, 920-935.
https://doi.org/10.1016/j.rser.2016.11.273
Eguchi K., Koga H., Sekizawa K., Sasaki K. J. Ceramic Soc. Japan 2000, 108(12), 1067-1071.
https://doi.org/10.2109/jcersj.108.1264_1067
Septiawan T.Y., Sumardiasih S., Obina W.M., Supriyanto A., Khairuddin, Cari C. AIP Conference Proceedings 2017, 1868, 060010.
https://doi.org/10.1063/1.4995174
Banik A., Ansari M.S., Qureshi M. ACS Omega 2018, 3, 14482-14493.
https://doi.org/10.1021/acsomega.8b02520
Saeidi M., Abrari M., Ahmadi M. Appl. Phys. A 2019, 125, 409.
https://doi.org/10.1007/s00339-019-2697-3
Valerio T.L., Maia G.A.R., Gonçalves L.F., Viomar A., Banczek E. do P., Rodrigues P.R.P. Mater. Res. 2019, 22(suppl. 1), e20180864.
https://doi.org/10.1590/1980-5373-mr-2018-0864
Chen L.H., Xue B.F., Luo Y.H. Chin. Phys. Lett. 2007, 24(2), 555-558.
Chen D., Zhang Q., Wang G. Electrochem. Commun. 2007, 9, 2755-2759.
https://doi.org/10.1016/j.elecom.2007.09.013
Jung Y.S., Yoo B., Lim M.K., Kim K.J. Electrochim. Acta 2009, 54, 6286-6291.
https://doi.org/10.1016/j.electacta.2009.06.006
Gu P., Yang D., Zhu X., Sun H., Wangyang P., Li J., Tian H. AIP Adv. 2017, 7, 105219.
https://doi.org/10.1063/1.5000564
Lu J.F., Bai J., Xu X.B., Li Z.H., Cao K., Cui J., Wang M.K. Chin. Sci. Bull. 2012, 57(32), 4131-4142.
https://doi.org/10.1007/s11434-012-5409-3
Wang M., Grätzel C., Zakeeruddin S.M., Grätzel M. Energy Environ. Sci. 2012, 5, 9394-9405.
https://doi.org/10.1039/c2ee23081j
Stergiopoulos T., Rozi E., Karagianni C.-S., Falaras P. Nanoscale Res. Lett. 2011, 6, 307.
https://doi.org/10.1186/1556-276X-6-307
Cao Y., Zhang J., Bai Y., Li R., Zakeeruddin S.M., Grätzel M., Wang P. J. Phys. Chem., C 2008, 112, 13775-13781.
https://doi.org/10.1021/jp805027v
Önen T., Karakuş M.Ö., Coşkun R., Çetin H. J. Photochem. Photobiol., A: Chemistry 2019, 385, 112082.
https://doi.org/10.1016/j.jphotochem.2019.112082
Shen S.-Y., Dong R.-X., Shih P.-T., Ramamurthy V., Lin J.-J., Ho K.-C. ACS Appl. Mater. Interfaces 2014, 6(21), 18489-18496.
https://doi.org/10.1021/am505394v
Pujiarti H., Arsyad W.S., Shobih, Muliani L., Hidayat R. IOP Conf. Series: J. Physics: Conf. Series 2018, 1011, 012020.
https://doi.org/10.1088/1742-6596/1011/1/012020
Duan Y., Tang Q., Chen Y., Zhao Z., Lv Y., Hou M., Yang P., He B., Yu L. J. Mater. Chem., A 2015, 3, 5368-5374.
https://doi.org/10.1039/C4TA06393G
Nam S.-H., Lee K.H., Yu J.-H., Boo J.-H. Appl. Sci. Converg. Technol. 2019, 28(6), 194-206.
https://doi.org/10.5757/ASCT.2019.28.6.194
Shalini S., Balasundaraprabhu R., Satish Kumar T., Prabavathy N., Senthilarasu S., Prasanna S. Int. J. Energy Res. 2016, 40, 1303-1320.
https://doi.org/10.1002/er.3538
Sharma K., Sharma V., Sharma S.S. Nanoscale Res. Lett. 2018, 13, 381.
https://doi.org/10.1186/s11671-018-2760-6
Qin Y., Peng Q. Int. J. Photoenergy 2012, 2012, 291579.
https://doi.org/10.1155/2012/291579
Abate A., Planells M., Hollman D.J., Stranks S.D., Petrozza A., Kandada A.R.S., Vaynzof Y., Pathak S.K., Robertson N., Snaith H.J. Adv. Energy Mater. 2014, 4, 1400166.
https://doi.org/10.1002/aenm.201400166
Hu Y., Ivaturi A., Planells M., Boldrini C.L., Biroli A.O., Robertson N. J. Mater. Chem., A 2016, 4, 2509.
https://doi.org/10.1039/C5TA09133K
Hwang S., Lee J.H., Park C., Lee H., Kim C., Park C., Lee M.H., Lee W., Park J., Kim K., Park N.G., Kim C. Chem. Commun. 2007, 46, 4887.
https://doi.org/10.1039/b709859f
Mane S.B., Cheng C.F., Sutanto A.A., Datta A., Dutta A., Hung C.H. Tetrahedron 2015, 71, 7977.
https://doi.org/10.1016/j.tet.2015.08.068
Al-horaibi S.A., Gaikwad S.T., Rajbhoj A.S. Adv. Mat. Lett. 2018, 9(5), 353-362.
https://doi.org/10.5185/amlett.2018.1740
Chen G., Sasabe H., Igarashi T., Hong Z., Kido J. J. Mater. Chem., A 2015, 3, 14517.
https://doi.org/10.1039/C5TA01879J
Khopkar S., Shankarling G. Dyes and Pigments 2019, 170, 107645.
https://doi.org/10.1016/j.dyepig.2019.107645
Qin C., Wong W.-Y., Han L. Chem. Asian. J. 2013, 8, 1706-1719.
https://doi.org/10.1002/asia.201300185
Jamalullail N., Mohamad I.S., Norizan M.N., Baharum N.A. IEEE 15th Student Conference on Research and Development (SCOReD) 2017, 344-349.
Pamain A., Pogrebnaya T., King'ondu C.K. Res. J. Eng. Appl. Sci. 2014, 3(5), 332-336.
Liu Q., Gao N., Liu D., Liu J., Li Y. Appl. Sci. 2018, 8, 1697.
https://doi.org/10.3390/app8091697
Selopal G.S., Wu H.-P., Lu J., Chang Y.-C., Wang M., Vomiero A., Concina I., Diau E.W.-G. Scientific Reports 2016, 6, 18756.
https://doi.org/10.1038/srep18756
Tsao H.N., T. Moehl C.Yi, Yum J.H., Zakeeruddin S.M., Nazeeruddin M.K., Grätzel M., ChemSusChem 2011, 4, 591-594 DOI: 10.1002/cssc.201100120
Angaridis P., Lazarides T., Coutsolelos A.C. Polyhedron 2014, 82, 19-32.
https://doi.org/10.1016/j.poly.2014.04.039
Ladomenou K., Kitsopoulos T.N., Sharma G.D., Coutsolelos A.G. RSC Adv. 2014, 4, 21379-21404.
https://doi.org/10.1039/C4RA00985A
Obraztsov I., Kutner W., D'Souza F. Sol. RRL 2017, 1, 1600002.
https://doi.org/10.1002/solr.201600002
Zhang L., Cole J.M. ACS Appl. Mater. Interfaces 2015, 7(6), 3427-3455.
https://doi.org/10.1021/am507334m
Daphnomili D., Landrou G., Singh S.P., Thomas A., Yesudas K., Bhanuprakash K., Sharma G.D., Coutsolelos A.G. RSC Adv. 2012, 2, 12899-12908.
https://doi.org/10.1039/c2ra22129b
Lu J., Xu X., Li Z., Cao K., Cui J., Zhang Y., Shen Y., Li Y., Zhu J., Dai S., Chen W., Cheng Y., Wang M. Chem. Asian. J. 2013, 8, 956-962.
https://doi.org/10.1002/asia.201201136
Mai C.-L., Moeh T., Hsieh C.-H., Decoppet J.-D., Zakeeruddin S.M., Grätzel M., Yeh C.-Y. ACS Appl. Mater. Interfaces 2015, 7(27), 14975-14982.
https://doi.org/10.1021/acsami.5b03783
Brennan B.J., Portolés M.J.L., Liddell P.A., Moore T.A., Moore A.L., Gust D. Phys. Chem. Chem. Phys. 2013, 15, 16605-16614.
https://doi.org/10.1039/c3cp52156g
Odobel F., Blart E., Lagrée M., Villieras M., Boujtita H., El Murr N., Caramoric S., Bignozzi C.A. J. Mater. Chem. 2003, 13, 502-510.
https://doi.org/10.1039/b210674d
López-Duarte I., Wang M., Humphry-Baker R., Ince M., Martínez-Díaz M.V., Nazeeruddin M.K., Torres T., Grätzel M. Angew. Chem. Int. Ed. 2012, 51, 1895-1898.
https://doi.org/10.1002/anie.201105950
He H., Gurunga A., Si L. Chem. Commun. 2012, 48, 5910-5912.
https://doi.org/10.1039/c2cc31440a
Ma T., Inoue K., Noma H., Yao K., Abe E. J. Photochem. Photobiol., A: Chemistry 2002, 152, 207-212.
https://doi.org/10.1016/S1010-6030(02)00025-4
Gou F., Jiang X., Li B., Jing H.-W., Zhu Z. ACS Appl. Mater. Interfaces 2013, 5(23), 12631-12637.
https://doi.org/10.1021/am403987b
Gou F., Jiang X., Fang R., Jing H., Zhu Z. ACS Appl. Mater. Interfaces 2014, 6, 6697-6703.
https://doi.org/10.1021/am500391w
Zhang N., Zhang B., Yan J., Xue X., Peng X., Li Y., Yang Y., Ju C., Fan C., Feng Y. Renewable Energy 2015, 77, 579-585.
https://doi.org/10.1016/j.renene.2014.12.066
Keawin T., Tarsang R., Sirithip K., Prachumrak N., Sudyoadsuk T., Namuangruk S., Roncali J., Kungwan N., Promarak V., Jungsuttiwong S. Dyes and Pigments 2017, 136, 697-706.
https://doi.org/10.1016/j.dyepig.2016.09.035
Ishida M., Park S.W., Hwang D., Koo Y.B., Sessler J.L., Kim D.Y., Kim D. J. Phys. Chem., C 2011, 115, 19343-19354.
https://doi.org/10.1021/jp202307b
Matsuzaki H., Murakami T.N., Masaki N., Furube A., Kimura M., Mori S. J. Phys. Chem., C 2014, 118, 17205-17212.
https://doi.org/10.1021/jp500798c
Si L., He H. J. Phys. Chem., A 2014, 118(19), 3410-3418.
https://doi.org/10.1021/jp412609k
Imahori H., Hayashi S., Hayashi H., Oguro A., Eu S., Umeyama T., Matano Y. J. Phys. Chem., C 2009, 113, 18406-18413.
https://doi.org/10.1021/jp907288h
Kroeze J.E., Hirata N., Koops S., Nazeeruddin Md.K., Schmidt-Mende L., Grätzel M., Durrant J.R. J. Am. Chem. Soc. 2006, 128(50), 16376-16383.
https://doi.org/10.1021/ja065653f
Zhang L., Cole J.M. J. Mater. Chem., A 2017, 5, 19541-19559.
https://doi.org/10.1039/C7TA05632J
Xue X., Zhang W., Zhang N., Ju C., Peng X., Yang Y., Liang Y., Feng Y., Zhang B. RSC Adv. 2014, 4, 8894-8900.
https://doi.org/10.1039/c3ra46212a
Chen J., Ko S., Liu L., Sheng Y., Han H., Li X. New J. Chem. 2015, 39, 3736-3746.
https://doi.org/10.1039/C4NJ02263G
Lu F., Zhang J., Zhou Y., Zhao Y., Zhang B., Feng Y. Dyes and Pigments 2016, 125, 116-123.
https://doi.org/10.1016/j.dyepig.2015.10.010
Magnano G., Marinotto D., Cipolla M.P., Trifiletti V., Listorti A., Mussini P.R., Di Carlo G., Tessore F., Manca M., Orbelli Biroli A., Pizzotti M. Phys. Chem. Chem. Phys. 2016, 18, 9577-9585.
https://doi.org/10.1039/C6CP00129G
Higashino T., Kawamoto K., Sugiura K., Fujimori Y., Tsuji Y., Kurotobi K., Ito S., Imahori H. ACS Appl. Mater. Interfaces 2016, 8(24), 15379-15390.
https://doi.org/10.1021/acsami.6b03806
Ananthakumar S., Balaji D., Kumar J.R., Babu S.M. SN Appl. Sci. 2019, 1, 186.
https://doi.org/10.1007/s42452-018-0054-3
Bessho T., Zakeeruddin S.M., Yeh C.-Y., Diau E.W.-G., Grätzel M. Angew. Chem. Int. Ed. 2010, 49, 6646-6649.
https://doi.org/10.1002/anie.201002118
Michaels H., Rinderle M., Freitag R., Benesperi I., Edvinsson T., Socher R., Gagliardi A., Freitag M. Chem. Sci. 2020, 11, 2895-2906.
https://doi.org/10.1039/C9SC06145B
Truta L.A.A.N.A., Moreira F.T.C., Sales M.G.F. Biosens. Bioelectron. 2018, 107, 94-102.
https://doi.org/10.1016/j.bios.2018.02.011
Guo W., Xue X., Wang S., Lin C., Wang Z.L. Nano Lett. 2012, 12, 2520-2523.
https://doi.org/10.1021/nl3007159
Pu X., Song W., Liu M., Sun C., Du C., Jiang C., Huang X., Zou D., Hu W., Wang Z.L. Adv. Energy Mater. 2016, 6, 1601048.
https://doi.org/10.1002/aenm.201601048
Yun S., Qin Y., Uhl A.R., Vlachopoulos N., Yin M., Li D., Han X., Hagfeldt A. Energy Environ. Sci. 2018, 11, 476-526.
https://doi.org/10.1039/C7EE03165C
Honda K, Fujishima A. Nature 1972, 238, 37-38.
https://doi.org/10.1038/238037a0
Watanabe M. Sci. Technol. Adv. Mater. 2017, 18(1), 705-723.
https://doi.org/10.1080/14686996.2017.1375376
Youngblood W.J., Lee S.-H.A., Maeda K., Mallouk T.E. Acc. Chem. Res. 2009, 42(12), 1966-1973.
https://doi.org/10.1021/ar9002398
Gan J., Lu X., Tong Y. Nanoscale 2014, 6, 7142-7164.
https://doi.org/10.1039/c4nr01181c
Abe R. J. Photochem. Photobiol., C: Photochem. Rev. 2010, 11, 179-209.
https://doi.org/10.1016/j.jphotochemrev.2011.02.003
Yun S., Vlachopoulos N., Qurashi A., Ahmad S., Hagfeldt A. Chem. Soc. Rev. 2019, 48, 3705-3722.
https://doi.org/10.1039/C8CS00987B
Swierk J.R., Mallouk T.E. Chem. Soc. Rev. 2013, 42, 2357-2387.
https://doi.org/10.1039/C2CS35246J
Swierk J.R., Méndez-Hernádez D.D., McCool N.S., Liddell P., Terazono Y., Pahk I., Tomlin J.J., Oster N.V., Moore T.A., Moore A.L., Gust D., Mallouk T.E. Proc. Nat. Acad. Sci. 2015, 112(6), 1681-1686.
https://doi.org/10.1073/pnas.1414901112
Sherman B.D., Bergkamp J.J., Brown C.L., Moore A.L., Gust D., Moore T.A. Energy Environ Sci. 2016, 9, 1812-1817.
https://doi.org/10.1039/C6EE00258G
Kang S.H., Jeong M.J., Eom Y.K., Choi I.T., Kwon S.M., Yoo Y., Kim J., Kwon J., Park J.H., Kim H.K. Adv. Energy Mater. 2017, 7, 1602117.
https://doi.org/10.1002/aenm.201602117
Melville O.A., Lessard B.H., Bender T.P. ACS Appl. Mater. Interfaces 2015, 7, 13105−13118.
https://doi.org/10.1021/acsami.5b01718
de la Torre G., Bottari G., Torres T. Adv. Energy Mater. 2017, 7(10), 1601700.
https://doi.org/10.1002/aenm.201601700
Brinkmann H., Kelting C., Makarov S., Tsaryova O., Schnurpfeil G., Wöhrle D., Schlettwein D. Phys. Status Solidi (A) Appl. Mater. Sci. 2008, 205(3), 409−420.
https://doi.org/10.1002/pssa.200723391
Stuzhin P.A. Fluorinated Phthalocyanines and Their Analogues In: Fluorine in Heterocyclic Chemistry. Vol. 1. 5-Membered Heterocycles and Macrocycles. (Nenajdenko V.G., Ed.). Heidelberg: Springer, 2014. p. 621−681.
https://doi.org/10.1007/978-3-319-04346-3_15
Stuzhin P.A., Ercolani C. Porphyrazines with Annulated Heterocycles. In: Porphyrin Handbook. Vol. 15. (Kadish K.M., Smith K.M., Guilard R., Ed.) Amsterdam: Elsevier Science, 2003. p. 263−364.
https://doi.org/10.1016/B978-0-08-092389-5.50011-0
Donzello M.P., Ercolani C., Novakova V., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2016, 309, 107−179.
https://doi.org/10.1016/j.ccr.2015.09.006
Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1−73.
https://doi.org/10.1016/j.ccr.2018.01.015
Lonchakov A.V., Rakitin O.A., Gritsan N.P., Zibarev A.V. Molecules 2013, 18(8), 9850−9900.
https://doi.org/10.3390/molecules18089850
Rakitin O.A. Tetrahedron Lett. 2020, 61(34), 152230.
https://doi.org/10.1016/j.tetlet.2020.152230
Konstantinova L.S., Knyazeva E.A., Rakitin O.A. Rev. Org. Preparations and Procedures Int. 2014, 46(6), 475−544.
https://doi.org/10.1080/00304948.2014.963454
Stuzhin P.A., Bauer E.M., Ercolani C. Inorg. Chem. 1998, 37(7), 1533−1539.
https://doi.org/10.1021/ic9609259
Bauer E.M., Ercolani C., Galli P., Popkova I.A., Stuzhin P.A. J. Porphyrins Phthalocyanines 1999, 3(5), 371−379.
https://doi.org/10.1002/(SICI)1099-1409(199906)3:5<371::AID-JPP140>3.0.CO;2-F
Donzello M.P., Ercolani C., Stuzhin P.A. Coord. Chem. Rev. 2006, 250(11-12), 1530-1561.
https://doi.org/10.1016/j.ccr.2006.02.009
Cozzolino A., Yang Q., Vargas-Baca I. Cryst. Growth Des. 2010, 10, 4959-4964.
https://doi.org/10.1021/cg101060s
Stuzhin P.A., Mikhailov M.S., Yurina E.S., Bazanov M.I., Koifman O.I., Pakhomov G.L., Travkin V.V., Sinelshchikova A.A. Chem. Comm. 2012, 48(81), 10135-10137.
https://doi.org/10.1039/c2cc35580a
Otlyotov A.A., Ryzhov I.V., Kuzmin I.A., Zhabanov Y.A., Mikhailov M.S., Stuzhin P.A. Int. J. Molec. Sci. 2020, 21(8), 2923.
https://doi.org/10.3390/ijms21082923
Stuzhin P.A., Ivanova S.S., Hamdoush M., Kirakosyan G.A., Kiselev A., Popov A., Sliznev V., Ercolani C. Dalton Trans. 2019, 48(37), 14049-14061.
https://doi.org/10.1039/C9DT02345C
Bauer E.M., Cardarilli D., Ercolani C., Stuzhin P.A., Russo U. Inorg. Chem. 1999, 38(26), 6114-6120.
https://doi.org/10.1021/ic990855g
Pia Donzello M., Viola E., Giustini M., Ercolani C., Monacelli F. Dalton Trans. 2012, 41(20), 6112-6121.
https://doi.org/10.1039/c2dt12381a
Angeloni S., Bauer E.M., Ercolani C., Popkova I.A., Stuzhin P.A. J. Porphyrins Phthalocyanines 2001, 5(12), 881-888.
https://doi.org/10.1002/jpp.558
Tarakanova E.N., Hamdoush M., Eroshin A.V., Ryzhov I.V., Zhabanov Y.A., Stuzhin P.A. Polyhedron 2021, 193, 114877.
https://doi.org/10.1016/j.poly.2020.114877
Donzello M.P., Agostinetto R., Ivanova S.S., Fujimori M., Suzuki Y., Yoshikawa H., Shen J., Awaga K., Ercolani C., Kadish K.M., Stuzhin P.A. Inorg. Chem. 2005, 44(23), 8539-8551.
https://doi.org/10.1021/ic050866b
Miyoshi Y., Takahashi K., Fujimoto T., Yoshikawa H., Matsushita M.M., Ouchi Y., Kepenekian M., Robert V., Donzello M.P., Ercolani C., Awaga K. Inorg. Chem. 2012, 51(1), 456-462.
https://doi.org/10.1021/ic201880g
Onay H., Yerli Y., Öztürk R. Transition Met. Chem. 2009, 34(2), 163-166.
https://doi.org/10.1007/s11243-008-9172-x
Hamdoush M., Ivanova S.S., Pakhomov G.L., Stuzhin P.A. Macroheterocycles 2016, 9(3), 230-233.
https://doi.org/10.6060/mhc160424s
Hamdoush M., Nikitin K., Skvortsov I., Somov N., Zhabanov Yu., Stuzhin P.A. Dyes and Pigments 2019, 170, 107584.
https://doi.org/10.1016/j.dyepig.2019.107584
Kudrik E.V., Bauer E.M., Ercolani C., Chiesi-Villa A., Rizzoli C., Gaberkorn A., Stuzhin P.A. Mendeleev Commun. 2001, 11(2), 45-47.
https://doi.org/10.1070/MC2001v011n02ABEH001372
Donzello M.P., Ercolani C., Gaberkorn A.A., Kudrik E.V., Meneghetti M., Marcolongo G., Rizzoli C., Stuzhin P.A. Chem. Eur. J. 2003, 9(17), 4009-4024.
https://doi.org/10.1002/chem.200304929
Gaberkorn A.A., Donzello M.-P., Stuzhin P.A. Russ. J. Org. Chem. 2006, 42(6), 929-935.
https://doi.org/10.1134/S1070428006060200
Stuzhin P.A., Pimkov I.V., Ul-Haq A., Ivanova S.S., Popkova I.A., Volkovich D.I., Kuzmitskii V.A., Donzello M.-P. Russ. J. Org. Chem. 2007, 43(12), 1854-1863.
https://doi.org/10.1134/S1070428007120202
Svec J., Zimcik P., Novakova L., Rakitin O.A., Amelichev S., Stuzhin P.A., Novakova V. Eur. J. Org. Chem. 2015, 3, 596-604.
https://doi.org/10.1002/ejoc.201403329
Stuzhin P.A. Synthesis, Structure and Physico-chemical properties of Azaporphyrins and Porphyrazines. Diss. doc. chem sci. Ivanovo: ISUCT, 2004.
Volkovich D.I., Kuzmitsky V.A., Stuzhin P.A. J. Appl. Spectrosc. 2008, 75(5), 621-636.
https://doi.org/10.1007/s10812-008-9113-7
Cai X., Zhang Y., Zhang X., Jiang J. J. Molec. Struc.: THEOCHEM 2007, 812(1-3), 63-70.
https://doi.org/10.1016/j.theochem.2007.02.010
Donzello M.-P., Ercolani C., Kadish K.M., Ricciardi G., Rosa A., Stuzhin P.A. Inorg. Chem. 2007, 46(10), 4145-4157.
https://doi.org/10.1021/ic070038d
Tverdova N.V., Giricheva N.I., Savelyev D.S., Mikhailov M.S., Vogt N., Koifman O.I., Stuzhin P.A., Girichev G.V. Macroheterocycles 2017, 10(1), 27-30.
https://doi.org/10.6060/mhc170399g
Zhabanov Y.A., Sliznev V.V., Ryzhov I.V., Stuzhin P.A. J. Porphyrins Phthalocyanines 2020, 24(9), 1146-1154.
https://doi.org/10.1142/S1088424620500285
Zhabanov Yu.A., Tverdova N.V., Giricheva N.I., Girichev G.V., Stuzhin P.A. J. Porphyrins Phthalocyanines 2017, 21(4-6), 439-452.
https://doi.org/10.1142/S1088424617500444
Fujimori M., Suzuki Y., Yoshikawa H., Awaga K. Angew. Chem. Int. Ed. 2003, 42(47), 5863-5865.
https://doi.org/10.1002/anie.200352571
Suzuki Y., Fujimori M., Yoshikawa H., Awaga K. Chem. Eur. J. 2004, 10(20), 5158-5164.
https://doi.org/10.1002/chem.200400394
Donzello M.P., Fujimori M., Miyoshi Y., Yoshikawa H., Viola E., Awaga K., Ercolani C. J. Porphyrins Phthalocyanines 2010, 14(4), 343-348.
https://doi.org/10.1142/S1088424610002082
Miyoshi Y., Kubo M., Fujinawa T., Suzuki Y., Yoshikawa H., Awaga K. Angew. Chem. Int. Ed. 2007, 46(29), 5532-5536.
https://doi.org/10.1002/anie.200700702
Eguchi K., Heutz S., Awaga K. J. Porphyrins Phthalocyanines 2017, 21(4-6), 322-326.
https://doi.org/10.1142/S1088424617500171
Eguchi K., Nanjo C., Awaga K., Tseng H.-H., Robaschik P., Heutz S. Phys. Chem. Chem. Phys. 2016, 18(26), 17360-17365.
https://doi.org/10.1039/C6CP01932C
Stuzhin P.A., Mikhailov M.S., Travkin V.V., Gudkov E.Y., Pakhomov G.L. Macroheterocycles 2012, 5(2), 162-165.
https://doi.org/10.6060/mhc2012.120573p
Stuzhin P.A., Mikhailov M.S., Travkin V.V., Pakhomov G.L. Zinc(II) Tetra(1,2,5-thiadiazolo)porphyrazine Complex in Thin Film Photovoltaic Structures. In: Recent Developments in Coordination, Bioinorganic, and Applied Inorganic Chemistry. Vol. 11. (Melnik M., Segl'a P., Tatarko M., Eds.) Bratislava: Press of Slovak University of Technology, 2013. p. 318-323. ISBN 978-80-227-3918-4.
https://doi.org/10.13140/2.1.2341.3761
Hou J., Wang Y., Eguchi K., Nanjo C., Takaoka T., Sainoo Y., Awaga K., Komeda T. Appl. Surface Sci. 2018, 440, 16-19.
https://doi.org/10.1016/j.apsusc.2018.01.001
Wang Y., Hou J., Eguchi K., Nanjo C., Takaoka T., Sainoo Y., Awaga K., Komeda T. ACS Omega 2020, 5(12), 6676-6683.
https://doi.org/10.1021/acsomega.9b04453
Miyoshi Y., Fujimoto T., Yoshikawa H., Matsushita M.M., Awaga K., Yamada T., Ito H. Org. Electron. 2011, 12(2), 239-243.
https://doi.org/10.1016/j.orgel.2010.11.005
Fujimoto T., Miyoshi Y., Matsushita M.M., Awaga K. Chem. Commun. 2011, 47(20), 5837-5839.
https://doi.org/10.1039/c0cc05198e
Nanjo C., Fujimoto T., Matsushita M.M., Awaga K. J. Phys. Chem., C 2014, 118(26), 14142-14149.
https://doi.org/10.1021/jp502056s
Koptyaev A.I., Khamdoush M., Fedoseev A.N., Travkin V.V., Pakhomov G.L. Macroheterocycles 2018, 11(4), 412-417.
https://doi.org/10.6060/mhc181114p
Pakhomov G.L., Travkin V.V., Hamdoush M., Zhabanov Yu.A., Stuzhin P.A. Macroheterocycles 2017, 10(4-5), 548-551.
https://doi.org/10.6060/mhc171038s
Park J.M., Lee J.H., Jang W.-D. Coord. Chem. Rev. 2020, 407, 213157-213185.
https://doi.org/10.1016/j.ccr.2019.213157
Konovalova N.V., Evstigneeva R.P., Luzgina V.N. Russ. Chem. Rev. 2001, 70, 939-970.
https://doi.org/10.1070/RC2001v070n11ABEH000682
Borovkov V.V., Mamardashvili N.Zh., Inoue Y. Russ. Chem. Rev. 2006, 75, 737-748.
https://doi.org/10.1070/RC2006v075n08ABEH003630
Kruk N.N. J. Appl. Spectrosc. 2008, 75, 461-482.
https://doi.org/10.1007/s10812-008-9088-4
Flamigni L., Gryko D.T. Chem. Soc. Rev. 2009, 38, 1635-1646.
https://doi.org/10.1039/b805230c
De Souza F., Chitta R., Ohkubo K. et al. J. Am. Chem. Soc. 2008, 130, 14263-14272.
https://doi.org/10.1021/ja804665y
Adeyemi O.O., Malinovskii V.L., Biner S.M. et al. Chem. Commun. 2012, 48, 9589-9591.
https://doi.org/10.1039/c2cc34183b
Andrianova L.G., Lomova T.N., Berezin B.D. Zhurn. Neorgan. Khimii 1984, 29, 1697-1701. (in Russ.).
Miyazaki Y., Satake A., Kobuke Y. J. Mol. Cat. A: Chem. 2008, 283, 129-139.
https://doi.org/10.1016/j.molcata.2007.12.016
Ni Y., Marchal G., Yu G. et al. Acad. Radiol. 1995, 2, 687-699.
https://doi.org/10.1016/S1076-6332(05)80437-4
He H., Zhu X., Hou A. Dalton Trans. 2004, 23, 4064-4073.
https://doi.org/10.1039/B410600H
He H., Wong W.-K., Li K.-F., Cheah K.-W. Synth. Met. 2004, 143, 81-87.
https://doi.org/10.1016/j.synthmet.2003.10.011
He H., Sykes A.G., May P.S., He G. Dalton Trans. 2009, 36, 7454-7461.
https://doi.org/10.1039/B909243A
Foley T., Harrison B., Knefely A. et al. Inorg. Chem. 2003, 42, 5023-5032.
https://doi.org/10.1021/ic034217g
Xin Z., Wei L., Ming J., Fa L. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2000, 30, 1747-1758.
https://doi.org/10.1080/00945710009351866
Li D.-M., Zhao Z.-X., Liu S.-Q. et al. Synth. Commun. 2000, 30, 4017-4026.
https://doi.org/10.1080/00397910008087017
Li D.-M., Zhao Z.-X., Sun H.-R. et al. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2000, 30, 1899-1915.
https://doi.org/10.1080/00945710009351877
Zhao Z., Liu G. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2002, 32, 465-473.
https://doi.org/10.1081/SIM-120003789
Wong W.-K., Hou A., Guo J. et al. J. Chem. Soc., Dalton Trans. 2001, 20, 3092-3098.
https://doi.org/10.1039/b104993n
Jiang F.-L., Wong W.-K., Zhu X.-J. et al. Eur. J. Inorg. Chem. 2007, 21, 3365-3374.
https://doi.org/10.1002/ejic.200700153
Zhu X.-J., Zhang T., Zhao S. et al. Eur. J. Inorg. Chem. 2011, 22, 3314-3320.
https://doi.org/10.1002/ejic.201100025
Hindre F., Plouzennec M., Certaines J. et al. J. Magn. Reson. Imaging 1993, 3, 59-65.
https://doi.org/10.1002/jmri.1880030111
Li G., Slansky A., Dobhal M.P., Goswami L.N. Bioconjugate Chem. 2005, 16, 32-42.
https://doi.org/10.1021/bc049807x
Nah M., Oh J.B., Kim H.K. et al. J. Phys. Chem. A. 2007, 111, 6157-6164.
https://doi.org/10.1021/jp0688512
Beeby A., Dickins R., Fitzgerald S. et al. Chem. Commun. 2000, 13, 1183-1184.
https://doi.org/10.1039/b002452j
Kang T.S., Harrison B.S., Foley T.J. et al. Adv. Mat. 2003, 15, 1093-1097.
https://doi.org/10.1002/adma.200304692
Guo L., Yan B. Inorg. Chem. Commun. 2011, 14, 1833-1837.
https://doi.org/10.1016/j.inoche.2011.08.020
Zhu X., Wong W.-K., Wong W.-Y., Yang X. Eur. J. Inorg. Chem. 2011, 4651-4674.
https://doi.org/10.1002/ejic.201100481
Mironov А.F. Russ. Chem. Rev. 2013, 82, 333-351.
https://doi.org/10.1070/RC2013v082n04ABEH004300
Shuhui B., Hu J., Wang Q., Liu X., Zhen Z. Photochem. Photobiol. Sci. 2008, 7, 474-479.
https://doi.org/10.1039/b715809b
Tolbin A., Pushkarev V., Tomilova L. Mendeleev Commun. 2008, 18, 94-95.
https://doi.org/10.1016/j.mencom.2008.03.015
Kasuga K., Tsutsui M. Coord. Chem. Rev. 1980, 32, 67-95.
https://doi.org/10.1016/S0010-8545(00)80370-7
Smola S.S., Snurnikova O.V., Fadeyev E.N. et al. Macroheterocycles 2012, 5, 343-349.
https://doi.org/10.6060/mhc2012.121193r
Semenishyn N.N., Smola S.S., Rusakova N.V. et al. Macroheterocycles 2017, 10, 268-272.
https://doi.org/10.6060/mhc170621r
Semenishyn N.N., Smola S.S., Rusakova N.V. et al. Macroheterocycles 2018, 11, 262-268.
https://doi.org/10.6060/mhc180691r
Gross Z., Galili N., Saltsman I. Angew. Chem. Int. Ed. 1999, 38, 1427-1429.
https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1427::AID-ANIE1427>3.0.CO;2-1
Semenishyn N., Gross Z. Dalton Trans. 2013, 42, 3775-3778.
https://doi.org/10.1039/c2dt32842a
Buckley H.L., Anstey M.R., Gryko D.T., Arnold J. Chem. Commun. 2013, 49, 3104-3106.
https://doi.org/10.1039/c3cc38806a
Semenishyn N.N., Rusakova N.V. Macroheterocycles 2016, 9, 163-168.
https://doi.org/10.6060/mhc160425r
Day N.U., Wamser C.C., Walter M.G. Polym. Int. 2015, 64, 833-857.
https://doi.org/10.1002/pi.4908
Asif Mahmood et al. J. Mater. Chem. A. 2018, 6, 16769-16797.
https://doi.org/10.1039/C8TA06392C
Shirakawa H. et al. J. Chem. Soc., Chem. Commun. 1977, 16, 578-580.
https://doi.org/10.1039/c39770000578
Mac Diarmid A.G. Synthetic Metals 2001, 125(1), 11-22.
https://doi.org/10.1016/S0379-6779(01)00508-2
Heeger A.J. Rev. Modern Phys. 2001, 73(3), 681-700.
https://doi.org/10.1103/RevModPhys.73.681
Liu L., Yang D., Tian H., Ji Y. Optics Commun. 2012, 285, 171–177.
https://doi.org/10.1016/j.optcom.2011.08.066
Light Scattering in Solids I. Introductory Concepts (Cardona M., Ed.). Springer Berlin Heidelberg 1983. XV 366 p.
https://doi.org/10.1007/3-540-11913-2
Troger F. et al. Springer Berlin Heidelberg 2012, 161-251.
Bower D.I. Infrared Dichroism, Polarized fluorescence and Raman spectroscopy. In: Structure and Properties of Oriented Polymers (Ward I.M., Ed.). Springer Netherlands, 1997. p. 181-233.
https://doi.org/10.1007/978-94-011-5844-2
Sosorev A.Yu., Trukhanov V.A., Maslennikov D.R. et al. ACS Appl. Mater. Interfaces 2020, 12(8), 9507-9519.
https://doi.org/10.1021/acsami.9b20295
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I., Koifman O.I. Mendeleev Commun. 2019, 29, 309-311.
https://doi.org/10.1016/j.mencom.2019.05.023
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Adv. Colloid Interface Sci. 2018, 253, 23-34.
https://doi.org/10.1016/j.cis.2018.02.001
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2018, 292, 256-267.
https://doi.org/10.1016/j.electacta.2018.09.127
Chulovskaya S.A., Kuzmin S.M., Parfenyuk V.I. Macroheterocycles 2015, 8, 259-265.
https://doi.org/10.6060/mhc150662k
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. J. Electroanal. Chem. 2016, 772, 80-88.
https://doi.org/10.1016/j.jelechem.2016.04.024
Kuzmin S.M., Chulovskaya S.A., Tesakova M.V., Semeikin A.S., Parfenyuk V.I. Macroheterocycles 2014, 7, 218-224.
https://doi.org/10.6060/mhc140511k
Kuzmin S.M., Chulovskaya S. A., Parfenyuk V.I. Macroheterocycles 2013, 6, 334-339.
https://doi.org/10.6060/mhc131057k
Tesakova M.V., Semeikin A.S., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2016, 20, 793-803.
https://doi.org/10.1142/S1088424616500930
Kuz'min S.M., Chulovskaya S.A., Parfenyuk V.I. Russ. J. Electrochem. 2014, 50(5), 429-437.
https://doi.org/10.1134/S1023193514050073
Lunt R.R., Benziger J.B., Forrest S.R. Adv. Mater. 2010, 22, 1233-1236.
https://doi.org/10.1002/adma.200902827
Mikhnenko O.V., Lin J., Shu Y., Anthony J.R., Blom P.W.M., Nguyen T.-Q. et al. Phys. Chem. Chem. Phys. 2012, 14, 14196-14201.
https://doi.org/10.1039/c2cp41359k
Menke S.M., Holmes R.J. Energy Environ Sci. 2014, 7, 499-512.
https://doi.org/10.1039/C3EE42444H
Walter M.G., Wamser C.C. J. Phys. Chem. C. 2010, 114, 7563-7574.
https://doi.org/10.1021/jp910016h
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2020, 342, 136064.
https://doi.org/10.1016/j.electacta.2020.136064
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I., Koifman O.I. Mendeleev Commun. 2020. DOI 10.1016/j.mencom.2020.11.030.
https://doi.org/10.1016/j.mencom.2020.11.030
Fateeva A., Devautour-Vinot S., Heymans N., Devic T., Grenèche J.-M., Wuttke S., Miller S., Lago A., Serre C., Weireld G.D., Maurin G., Vimont A., Férey G. Chem. Mater. 2011, 23, 4641-4651.
https://doi.org/10.1021/cm2025747
Fateeva A., Chater P.A., Ireland C.P., Tahir A.A., Khimyak Y.Z., Wiper P.V., Darwent J.R., Rosseinsky M.J. Angew. Chem. Int. 2012, 51, 7440-7444.
https://doi.org/10.1002/anie.201202471
Yang X.L., Xie M.H., Zou C., He Y., Chen B., O'Keeffe M. et al. J. Am. Chem. Soc. 2012, 13, 10638-10645.
https://doi.org/10.1021/ja303728c
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2015, 19, 1053-1062.
https://doi.org/10.1142/S1088424615500807
Parfenyuk V.I., Tesakova M.V., Chulovskaya S.A., Kuzmin S.M. Macroheterocycles 2019, 12, 154-164.
https://doi.org/10.6060/mhc190232p
Tesakova M.V., Koifman O.I., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2018, 22, 632-639.
https://doi.org/10.1142/S1088424618500864
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Mater. Chem. Phys. 2020, 241, 122394.
https://doi.org/10.1016/j.matchemphys.2019.122394
Popov I.A., Kuzmin S.M., Chulovskaya S.A., Semeikin A.S., Parfenyuk V.I. Macroheterocycles 2012, 5(2), 131-135.
https://doi.org/10.6060/mhc2012.120254k
Kuzmin S.M., Chulovskaya S.A., Koifman O.I., Parfenyuk V.I. Electrochem. Commun. 2017, 83, 28-32.
https://doi.org/10.1016/j.elecom.2017.08.016
Tesakova M.V., Lutovac M., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2018, 22, 1047-1053.
https://doi.org/10.1142/S108842461850102X
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochimica Acta 2020, 342, 136064.
https://doi.org/10.1016/j.electacta.2020.136064
Filimonova Yu. A., Chulovskaya S. A., Kuzmin S. M., Parfenyuk V. I. Electroplating and surface treatment. 2020, 28, 21-28 [in Russian].
Masa J., Ozoemena K., Schuhmann W., Zagal J.H. J. Porphyrins Phthalocyanines 2012, 16, 762-784.
https://doi.org/10.1142/S1088424612300091
Tryk D.A., Cabrera C.R., Fujishima A., Spataru N. In: The Electrochemical Society Proceedings (Prakash J., Chu D., Scherson D., Enayetullah M., Tae Bae I., Eds.) Pennington, New Jersey, 2005. p. 45.
Taylor R.J., Humffray A.A. J. Electroanal. Chem. Interfacial Electrochem. 1975, 64, 63-84.
https://doi.org/10.1016/S0022-0728(75)80278-6
Qin H., Xu L., Zhong D. J. Phys. Chem. C 2020, 124, 5167-5173.
https://doi.org/10.1021/acs.jpcc.9b10664
Hu Q., Rezaee E., Li M., Chen Q., Cao Y., Mayukh M., McGrath D.V., Xu Z.X. ACS Appl. Mater. Interfaces 2019, 11, 36535-36543.
https://doi.org/10.1021/acsami.9b09490
Song C., Li Y., Gao C., Zhang H., Chuai Y., Song D. Mater. Lett. 2020, 270, 127666.
https://doi.org/10.1016/j.matlet.2020.127666
Boileau N.T., Melville O.A., Mirka B., Cranston R., Lessard B.H. RSC Adv. 2019, 9, 2133-2142.
https://doi.org/10.1039/C8RA08829B
Lo P.C., Rodríguez-Morgade M.S., Pandey R.K., Ng D., Torres T., Dumoulin F. Chem. Soc. Rev. 2020, 49, 1041-1056.
https://doi.org/10.1039/C9CS00129H
Valli F., García Vior M.C., Roguin L.P., Marino J. Free Radic. Biol. Med. 2020, 152, 743-754.
https://doi.org/10.1016/j.freeradbiomed.2020.01.018
Su H.C., Tran T.T., Bosze W., Myung N.V. Sens. Actuators Reports 2020, 2, 100011.
https://doi.org/10.1016/j.snr.2020.100011
Wang L., Wang L., Yang G., Xie Q., Zhong S., Su X., Hou Y., Zhang B. Langmuir 2020, 36, 4532-4539.
https://doi.org/10.1021/acs.langmuir.9b03636
Morlanés N., Almaksoud W., Rai R.K., Ould-Chikh S., Ali M.M., Vidjayacoumar B., Al-Sabban B.E., Albahily K., Basset J.M. Catal. Sci. Technol. 2020, 10, 844-852.
https://doi.org/10.1039/C9CY02326G
Neamtu M., Nadejde C., Brinza L., Dragos O., Gherghel D., Paul A. Sci. Rep. 2020, 10, 1-12.
https://doi.org/10.1038/s41598-020-61980-6
Thomas A.L. Phthalocyanine Research and Applications. CRC Press, 1990. 304 p.
Terao R., Nakazono T., Parent A.R., Sakai K. Chempluschem 2016, 81, 1064-1067.
https://doi.org/10.1002/cplu.201600263
Filippova A., Vashurin A., Znoyko S., Kuzmin I., Razumov M., Chernova A., Shaposhnikov G., Koifman O. J. Mol. Struct. 2017, 1149, 17-26.
https://doi.org/10.1016/j.molstruc.2017.07.086
Vashurin A., Filippova A., Znoyko S., Voronina A., Lefedova O., Kuzmin I., Maizlish V., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 983-996.
https://doi.org/10.1142/S1088424615500753
Vashurin A., Kuzmin I., Razumov M., Golubchikov O., Koifman O. Macroheterocycles 2018, 11, 11-20.
https://doi.org/10.6060/mhc180168v
Filippova A.A., Kerner A.A., Znoiko S.A., Tikhomirova T.V., Vashurin A.S. Russ. J. Inorg. Chem. 2020, 65, 247-254.
https://doi.org/10.1134/S0036023620020047
Voronina A.A., Filippova A.A., Znoiko S.A., Vashurin A.S., Maizlish V.E. Russ. J. Inorg. Chem. 2015, 60, 1407-1414.
https://doi.org/10.1134/S0036023615110236
Reid N., Barat R. Chem. Eng. Commun. 2016, 203, 714-723.
https://doi.org/10.1080/00986445.2015.1067802
Saka E.T., Çağlar Y. Catal. Lett. 2017, 147, 1471-1477.
https://doi.org/10.1007/s10562-017-2054-0
Dai D., Yang Z., Yao Y., Chen L., Jia G., Luo L. Catal. Sci. Technol. 2017, 7, 934-942.
https://doi.org/10.1039/C6CY02317G
Sun X., Wang L., Tan Z. Catal. Lett. 2015, 145, 1094-1102.
https://doi.org/10.1007/s10562-015-1500-0
Baturhan O.E., Sağlam M.B., Özkaya A.R. Synth. Met. 2020, 263, 116351.
https://doi.org/10.1016/j.synthmet.2020.116351
Chen B., Bu Y., Yang J., Nian W., Hao S. Chem. Eng. J. 2020, 399, 125675.
https://doi.org/10.1016/j.cej.2020.125675
Li L., Wu H., Chen H., Zhang J., Xu X., Wang S., Wang S., Sun H. Chemosphere 2020, 256, 127160.
https://doi.org/10.1016/j.chemosphere.2020.127160
Wang C., Shao N., Xu J., Zhang Z., Cai Z. J. Hazard. Mater. 2020, 388, 121751.
https://doi.org/10.1016/j.jhazmat.2019.121751
Gong J., Li D., Huang J., Ding L., Tong Y., Li K., Zhang C. Catal. Lett. 2014, 144, 487-497.
https://doi.org/10.1007/s10562-013-1178-0
Vashurin A., Kuzmin I., Mayzlish V., Razumov M., Golubchikov O., Koifman O. J. Serbian Chem. Soc. 2016, 81, 1025-1036.
https://doi.org/10.2298/JSC160105048V
Vashurin A., Maizlish V., Pukhovskaya S., Voronina A., Kuzmin I., Futerman N., Golubchikov O., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 573-581.
https://doi.org/10.1142/S1088424614501028
Tugba S.E., Tekintas K. J. Mol. Struct. 2020, 1215, 128189.
https://doi.org/10.1016/j.molstruc.2020.128189
Vashurin A., Erzunov D., Kazaryan K., Tonkova S., Tikhomirova T., Filippova A., Koifman O. Dyes and Pigments 2020, 174, 108018.
https://doi.org/10.1016/j.dyepig.2019.108018
Makarov S.G., Ketkov S.Y.,Wöhrle D. Chem. Commun. 2020, 56, 5653-5656.
https://doi.org/10.1039/D0CC01653E
Vashurin A., Marfin Y., Tarasyuk I., Kuzmin I., Znoyko S., Goncharenko A., Rumyantsev E. Appl. Organomet. Chem. 2018, 32, e4482.
https://doi.org/10.1002/aoc.4482
Vashurin A.S. Russ. Chem. Bull. 2016, 65, 2220-2228.
https://doi.org/10.1007/s11172-016-1572-z
Tripathi D., Negi H., Singh R.K., Singh U.P., Srivastava V.C. J. Coord. Chem. 2019, 72, 2982-2996.
https://doi.org/10.1080/00958972.2019.1683549
Yang Y., Li M., Ren Y., Li Y., Xia C. Int. J. Hydrogen Energy 2018, 43, 3797-3802.
https://doi.org/10.1016/j.ijhydene.2017.12.183
Thiruppathiraja T., Arokiyanathan A., Aazaad B., Silviya R., Lakshmipathi S. Int. J. Hydrogen Energy 2020, 45, 8540-8548.
https://doi.org/10.1016/j.ijhydene.2020.01.079
Guo S., Li D., Gao B., Li Y., Zhang H., Li Y., Duan Q. J. Coord. Chem. 2019, 72, 1146-1155.
https://doi.org/10.1080/00958972.2019.1578878
Huai M., Yin Z., Wei F., Wang G., Lu J., Zhuang L. Chem. Phys. Lett. 2020, 754, 137655.
https://doi.org/10.1016/j.cplett.2020.137655
Ma D.D., Han S.G., Cao C., Li X., Wu X.T., Zhu Q.L. Appl. Catal. B Environ. 2020, 264, 118530.
https://doi.org/10.1016/j.apcatb.2019.118530
Li K., Zhu J., Liu Q., Li Z., Zhao J. J. Electrochem. Soc. 2020, 167, 040506.
https://doi.org/10.1149/1945-7111/ab7184
Silva N., Castro-Castillo C., Oyarzún M., Ramírez S., Gutierrez-Ceron C., Marco J., Silva J., Zagal J. Electrochim. Acta 2019, 308, 295-306.
https://doi.org/10.1016/j.electacta.2019.04.005
Yan X., Xu X., Liu Q., Guo J., Kang L., Yao J. J. Power Sources 2018, 389, 260-266.
https://doi.org/10.1016/j.jpowsour.2018.03.042
Mahmiani Y., Sevim A., Gül A. J. Photochem. Photobiol. A Chem. 2016, 321, 24-32.
https://doi.org/10.1016/j.jphotochem.2015.12.015
Koç Keşir M., Dilber G., Sökmen M., Durmuş M. J. Sol-Gel Sci. Technol. 2020, 93, 687-694.
https://doi.org/10.1007/s10971-019-05109-w
Zhou Z., Chen A., Kong A., Fan X., Zhang X., Shan Y. J. Electrochem. Soc. 2018, 165, H658-H666.
https://doi.org/10.1149/2.1131810jes
Qian M., Ma J., Materials M. Trans. Tech. Publ. 2017, 748, 433-437.
https://doi.org/10.4028/www.scientific.net/KEM.748.433
Wang R., Liu Y., Zuo P., Zhang Z., Lei ., Liu Y. Environ. Sci. Pollut. Res. 2020, 27, 18831-18842.
https://doi.org/10.1007/s11356-020-08425-9
Huang Y., Yang Z., Yang S., Xu Y. J. Adv. Nanomater. 2017, 2, 146-153.
https://doi.org/10.1016/B978-0-12-849903-0.00008-7
Chauhan P., Yan N. RSC Adv. 2015, 5, 37517-37520.
https://doi.org/10.1039/C4RA16869K
Ziyadova T.M., Burmistrov V.A., Maizlish V.E., Koifman O.I. Russ. J. Phys. Chem A 2017, 91, 460-463.
https://doi.org/10.1134/S0036024417030323
Ziyadova T.M., Burmistrov V.A., Maizlish V.E., Koifman O.I. Kinet. Catal. 2016, 57, 313-318.
https://doi.org/10.1134/S0023158416030186
Mapukata S., Kobayashi N., Kimura M., Nyokong T. J. Photochem. Photobiol. A Chem. 2019, 379, 112-122.
https://doi.org/10.1016/j.jphotochem.2019.04.048
Zhu Z., Chen Y., Gu Y., Wu F., Lu W., Xu T., Chen W. Water Res. 2016, 93, 296-305.
https://doi.org/10.1016/j.watres.2016.02.035
Bridwell-Rabb J., Drennan C.L. Curr. Opin. Chem. Biol. 2017, 37, 63-70.
https://doi.org/10.1016/j.cbpa.2017.01.013
Giedyk M., Goliszewska K., Gryko D. Chem. Soc. Rev. 2015, 44, 3391-3404.
https://doi.org/10.1039/C5CS00165J
Zelder F. Chem. Commun. 2015, 51, 14004-14017.
https://doi.org/10.1039/C5CC04843E
Lexa D., Saveant J.-M. Acc. Chem. Res. 1983, 16, 235-243.
https://doi.org/10.1021/ar00091a001
Dereven'kov I.A., Hannibal L., Dürr M., Salnikov D.S., Bui Thi T.T., Makarov S.V., Koifman O.I., Ivanović-Burmazović I. J. Organomet. Chem. 2017, 839, 53-59.
https://doi.org/10.1016/j.jorganchem.2017.01.002
Dereven'kov I.A., Bui Thi T.T., Salnikov D.S., Makarov S.V. Russ. J. Phys. Chem. A 2016, 90, 596-600.
https://doi.org/10.1134/S0036024416030080
Lexa D., Saveant J.M., Zickler J. J. Am. Chem. Soc. 1980, 102, 2654-2663.
https://doi.org/10.1021/ja00528a023
Birke R.L., Huang Q., Spataru T., Gosser D.K. Jr. J. Am. Chem. Soc. 2006, 128, 1922-1936.
https://doi.org/10.1021/ja054479c
Sajan A., Birke R.L. Electroanalysis 2016, 28, 2743-2753.
https://doi.org/10.1002/elan.201600341
Dereven'kov I.A., Makarov S.V., Bui Thi T.T., Makarova A.S., Koifman O.I. Eur. J. Inorg. Chem. 2018, 2987-2992.
https://doi.org/10.1002/ejic.201800066
Pallares I.G., Moore T.C., Escalante-Semerena J.C., Brunold T.C. J. Am. Chem. Soc. 2016, 138, 3694-3704.
https://doi.org/10.1021/jacs.5b11708
Dürichen H, Diekert G, Studenik S. Protein Sci. 2019, 28, 1902-1908.
https://doi.org/10.1002/pro.3699
Johnston R.C., Zhou J., Smith J.C., Parks J.M. J. Phys. Chem. A 2016, 120, 7307-7318.
https://doi.org/10.1021/acs.jpcb.6b02701
Kumar M., Hirao H., Kozlowski P.M. J. Biol. Inorg. Chem. 2012, 17, 1107-1121.
https://doi.org/10.1007/s00775-012-0924-x
Kumar M., Kozlowski P.M. Angew. Chem. Int. Ed. 2011, 50, 8702-8705.
https://doi.org/10.1002/anie.201100469
Bhat S.A., Rashid N., Rather M.A., Pandit S.A., Ingole P.P., Bhat M.A. Electrochim. Acta 2020, 337, article number 135730
https://doi.org/10.1016/j.electacta.2020.135730
Robertson W.D., Bovell A.M., Warncke K. J. Biol. Inorg. Chem. 2013, 18, 701-713.
https://doi.org/10.1007/s00775-013-1015-3
Lexa D., Savéant J.-M. J. Chem. Soc., Chem. Commun. 1975, 872-874.
https://doi.org/10.1039/C39750000872
Shimakoshi H., Hisaeda Y. ChemPlusChem 2014, 79, 1250-1253.
https://doi.org/10.1002/cplu.201402081
Tian H., Shimakoshi H., Imamura K., Shiota Y., Yoshizawa K., Hisaeda Y. Chem. Commun. 2017, 53, 9478-9481.
https://doi.org/10.1039/C7CC04377E
Shimakoshi H., Luo Z., Tomita K., Hisaeda Y. J. Organomet. Chem. 2017, 839, 71-77.
https://doi.org/10.1016/j.jorganchem.2017.02.002
Ogawa A., Oohora K., Hayashi T. Inorg. Chem. 2018, 57, 14644-14652.
https://doi.org/10.1021/acs.inorgchem.8b02333
Grodkowski J., Neta P. J. Phys. Chem. A 2000, 104, 1848-1853.
https://doi.org/10.1021/jp9939569
Wang Y., Chen Z. Talanta 2010, 82, 534-539.
https://doi.org/10.1016/j.talanta.2010.05.020
Ji J., Chung Y., Kwon Y. J. Mat. Chem. C 2020, 8, 2749-2755.
https://doi.org/10.1039/C9TC06345E
Shahadat H.M., Younus H.A., Ahmad N., Shiguo Z., Zhuiykov S., Verpoort F. Chem. Commun. 2020, 56, 1968-1971.
https://doi.org/10.1039/C9CC08838E
Shimakoshi H., Hisaeda Y. Curr. Opin. Electrochem. 2018, 8, 24-30.
https://doi.org/10.1016/j.coelec.2017.12.001
Tahara K., Pan L., Ono T., Hisaeda Y. Beilstein J. Org. Chem. 2018, 14, 2553-2567.
https://doi.org/10.3762/bjoc.14.232
Thordarson P. Chem. Soc. Rev. 2011, 40, 1305-1323.
https://doi.org/10.1039/C0CS00062K
Zaitseva S.V., Zdanovich S.A., Koifman O.I. Macroheterocycles 2012, 5, 81-86.
https://doi.org/10.6060/mhc2012.111149z
Iwamoto H., Nishi S., Haino T. Chem. Commun. 2011, 47, 12670-12672.
https://doi.org/10.1039/c1cc14739k
Kundrat O., Kas M., Tkadlecova M., Lang K., Cvacka J., Stibor I., Lhotak P. Tetrahedron Lett. 2007, 48, 6620-6623.
https://doi.org/10.1016/j.tetlet.2007.07.137
Sallas F., Darcy R. Eur. J. Org. Chem. 2008, 6, 957-969.
https://doi.org/10.1002/ejoc.200700933
Korendovych I.V., Roesner R.A., Rybak-Akimova E.V. Adv. Inorg. Chem. 2007, 59, 109-173.
https://doi.org/10.1016/S0898-8838(06)59004-X
Puglisi A., Purrello R., Rizzarelli E., Sortino S., Vecchio G. New J. Chem. 2007, 31, 1499-1506.
https://doi.org/10.1039/b703680a
Hosokawa K., Miura Y., Kiba T., Kakuchi T., Sato S. Chem. Lett. 2008, 37, 60-61.
https://doi.org/10.1246/cl.2008.60
Fathalla M., Li S., Diebold U., Alb A., Jayawickramarajah J. Chem. Commun. 2009, 4209-4211.
https://doi.org/10.1039/b908050c
Kralova J., Kejik Z., Briza T., Pouckova P., Kral A., Martasek P., Kral V. J. Med. Chem. 2010, 53, 128-138.
https://doi.org/10.1021/jm9007278
Guo Y., Zhang P., Chao J., Shuang S., Dong C. Spectrochim. Acta A 2008, 71A, 946-950.
https://doi.org/10.1016/j.saa.2008.02.018
Fathalla M., Neuberger A., Li S.-C., Schmehl R., Diebold U., Jayawickramarajah J. J. Am. Chem. Soc. 2010, 132, 9966-9967.
https://doi.org/10.1021/ja1030722
Guo Y.-J., Chao J.-B., Pan J.-H. Spectrochim. Acta A 2007, 68A, 231-236.
https://doi.org/10.1016/j.saa.2006.11.019
Kiba T., Suzuki H., Hosokawa K., Kobayashi H., Baba S., Kakuchi T., Sato S. J. Phys. Chem. B 2009, 113, 11560-11563.
https://doi.org/10.1021/jp905904h
Ermilov E.A., Menting R., Lau J.T.F., Leng X., Roeder B., Ng D.K.P. Phys. Chem. Chem. Phys. 2011, 13, 17633-17641.
https://doi.org/10.1039/c1cp21930h
Samaroo D., Vinodu M., Chen X., Drain C.M. J. Comb. Chem. 2007, 9, 998-1011.
https://doi.org/10.1021/cc070067j
Tsuda A. Bull. Chem. Soc. Jpn. 2009, 82, 11-28.
https://doi.org/10.1246/bcsj.82.11
Goldberg I. CrystEngComm 2008, 10, 637-645.
https://doi.org/10.1039/b800107c
Boyd P.D.W., Reed C.A. Acc. Chem. Res. 2005, 38, 235-242.
https://doi.org/10.1021/ar040168f
Jurow M., Schuckman A.E., Batteas J.D., Drain C.M. Coord. Chem. Rev. 2010, 254, 2297-2310.
https://doi.org/10.1016/j.ccr.2010.05.014
Chen Y., Zhang Y., Liu Y. Isr. J. Chem. 2011, 51, 515-524.
https://doi.org/10.1002/ijch.201100010
Endo T. Chem. Rec. 2011, 11, 146-157.
https://doi.org/10.1002/tcr.201100001
Kraus T. Curr. Org. Chem. 2011, 15, 802-814.
https://doi.org/10.2174/138527211794518907
De Rossi R.H., Silva O.F., Vico R.V., Gonzalez C.J. Pure Appl. Chem. 2009, 81, 755-765.
https://doi.org/10.1351/PAC-CON-08-08-13
Ballester P., Claudel M., Durot S., Kocher L., Schoepff L., Heitz V. Chem. Eur. J. 2015, 21, 15339-15348.
https://doi.org/10.1002/chem.201502152
Maufroy A., Favereau L., Anne F.B., Pellegrin Y., Blart E., Hissler M., Jacquemin D., Odobel F. J. Mater. Chem. A 2015, 3, 3908-3917.
https://doi.org/10.1039/C4TA05974C
Koifman O.I., Mamardashvili N.Z., Antipon I.S. Synthetic Receptors on the Base of Porphyrins and Their Conjugates with Calix[4]arenes (Konovalov A.I., Ed.) Moscow, 2006. 248 p.
Mamardashvili G.M., Zvezdina S.V., Mamardashvili N.Z. Russ. J. Gen. Chem. 2011, 81, 594-601.
https://doi.org/10.1134/S1070363211030273
Kulikova O.M., Mamardashvili N.Z. Russ. J. Org. Chem. 2010, 46(8), 1244-1248.
https://doi.org/10.1134/S107042801008021X
Rossom W.V., Kundrat O., Ngo T.H., Lhotak P., Dehaen W., Maes W. Tetrahedron Lett. 2010, 51, 2423-2426.
https://doi.org/10.1016/j.tetlet.2010.02.137
Nakazawa J., Mizuki M., Shimazaki Y., Tani F., Naruta Y. Org. Lett. 2006, 8, 4275-4278.
https://doi.org/10.1021/ol061561j
Durot S., Taesch J., Heitz V. Chem. Rev. 2014, 114, 8542-8578.
https://doi.org/10.1021/cr400673y
Qiu W.-G., Li Z.-F., Bai G.-M., Meng S.-N., Dai H.-X., He H. Spectrochim. Acta A 2007, 66A, 1189-1193.
https://doi.org/10.1016/j.saa.2006.06.006
Guo Y.-J., Guo L., Pan J.-H. Phys. Chem. Liq. 2007, 45, 261-269.
https://doi.org/10.1080/00319100601137213
Tsuchiya Y., Yamano A., Shiraki T., Sada K., Shinkai S. Chem. Lett. 2011, 40, 99-101.
https://doi.org/10.1246/cl.2011.99
Callari F.L., Mazzaglia A., Scolaro L.M., Valli L., Sortino S. J. Mater. Chem. 2008, 18, 802-805.
https://doi.org/10.1039/b717260e
Yu M., Chen Y., Zhang N., Liu Y. Org. Biomol. Chem. 2010, 8, 4148-4154.
https://doi.org/10.1039/c0ob00080a
Favereau L., Warnan J., Anne F.B., Pellegrin Y., Blart E., Jacquemin D., Odobel F. J. Mater. Chem. A 2013, 1, 7572-7575.
https://doi.org/10.1039/c3ta11380a
Bichan N.G., Tyulyaeva E.Yu., Khodov I.A., Lomova T.N. J. Mol. Struct. 2014, 1061, 82-89.
https://doi.org/10.1016/j.molstruc.2013.12.074
Nguyen N.T., Mamardashvili G.M., Kulikova O.M., Scheblykin I.G., Mamardashvili N.Z., Dehaen W. RSC Adv. 2014, 4, 19703-19709.
https://doi.org/10.1039/C3RA45660A
Albrecht K., Kasai Y., Kimoto A., Yamamoto K. Macromolecules 2008, 41, 3793-3800.
https://doi.org/10.1021/ma800265h
Albrecht K., Kasai Y., Kuramoto Y., Yamamoto K. Chem. Comun. 2013, 46, 6861-6863.
https://doi.org/10.1039/c3cc43249a
Wang L., Li H., Deng J., Cao D. Curr. Org. Chem. 2013, 17, 3078-3091.
https://doi.org/10.2174/13852728113179990024
Su S., Ding Y., Li Y., Wu Y., Nie G. Biomaterials 2016, 80, 169-178.
https://doi.org/10.1016/j.biomaterials.2015.11.058
Tsolekile N., Nelana S., Oluwafemi O.S. Molecules 2019, 249140, 2669.
https://doi.org/10.3390/molecules24142669
Mamardashvili N., Maltseva O., Ivanova Y., Mamardashvili G. Tetrahedron Lett. 2008, 49, 3752-3756.
https://doi.org/10.1016/j.tetlet.2008.04.029
Paolesse R., Monti D., Nardis S., Di Natale C., Porphyrin-Based Chemical Sensors In: Handbook of Porphyrin Science (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co., 2013. p. 121-215.
https://doi.org/10.1002/chin.201311276
Cioates C., Van Staden S.- R., Van Staden F. J. Solid State Sci. Techn. 2020, 9, 051005.
https://doi.org/10.1149/2162-8777/ab9a5d
Gottfried M. J. Surf. Sci. Rep. 2015, 70, 259-379.
https://doi.org/10.1016/j.surfrep.2015.04.001
Fagadar-Cosma G., Birdeanu M., Fagadar-Cosma E. J. Res. Updates in Polym. Sci. 2016, 5, 39-51.
https://doi.org/10.6000/1929-5995.2016.05.01.4
Rodriguez-Mendez M., Antoniode de Saja J. Molecular Materials for Gas Sensor and Sensor Arrays. In: Adv. Nanomat. Inexpens. Gas Microsen. (Elsevier B.V., Liobet E., Eds.) 2020. p. 37-54.
https://doi.org/10.1016/B978-0-12-814827-3.00003-7
Paolesse R., Nardis S., Monti D., Stefanelli M., Di Natale C. Chem. Rev. 2017, 117, 2517−2583.
https://doi.org/10.1021/acs.chemrev.6b00361
Gouterman M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In: The Porphyrins. (Dolphin D., Ed.) New York: Academic, 1978. p. 1-128.
https://doi.org/10.1016/B978-0-12-220103-5.50008-8
Di Amico A., Di Natale C., Paolesse R., Macagnano A., Mantini A. Sens. Actuators 2000, B65, 209-215.
https://doi.org/10.1016/S0925-4005(99)00342-1
Rivera M., Rivera J. M., Amelines-Sarria O., Wang Y. A. Adv. Mater. Phys. Chem. 2018, 8, 441-457.
https://doi.org/10.4236/ampc.2018.811030
Celiesiute R., Ramanaviciene A., Gicevicius M., Ramanavicius A. Critical Rev. Anal. Chem. 2018, 49, 195–208.
https://doi.org/10.1080/10408347.2018.1499009
Supriya S., Shetti V. S., Hegde G. New J. Chem. 2018, 42, 12328-12348.
https://doi.org/10.1039/c8nj02254b
Itagaki Y., Deki K., Nakashima S-I., Sadaoka Y. Sens. Actuat. B Chem. 2005, 108, 393-397.
https://doi.org/10.1016/j.snb.2004.10.055
Ma X., Sun J., Wang M., Hu M., Chen G.H., Huang J. Sens. Actuat. B 2006, 114, 1035-1042.
https://doi.org/10.1016/j.snb.2005.07.073
Korposh S.O., Takahara N., Ramsden J.J., Lee S.-W., Kunitake T. J. Biol. Phys. Chem. 2006, 6, 125-132.
Muthukumar P., John S.A. Sens. Actuat., B 2011, 159, 238−244.
https://doi.org/10.1016/j.snb.2011.06.079
Kalimuthu P., Sivanesan A., John S.A. J. Chem. Sci. 2012, 124, 1315-1325.
https://doi.org/10.1007/s12039-012-0330-5
Cano M., Castillero P., Roale J., Pedrosa J.M., Brittle S., Richardson T., González-Elipe A.R., Barranco A. Sensor. Actuat. B Chem. 2010, 150, 764-769.
https://doi.org/10.1016/j.snb.2010.07.059
Lv Y., Wu J., Xu Z.K. Sensor. Actuat. B-Chem. 2010, 148, 233-239.
https://doi.org/10.1016/j.snb.2010.05.029
Lin F.-W., Xu X.-L., Wan L.-S., Wu J., Xu Z.K. RSC Adv. 2015, 5, 30472−30477.
https://doi.org/10.1039/C5RA01605C
Hu M., Kang W., Cheng B., Li Z., Zhao Y., Li L. Microchem. Acta 2016, 183(5), 1713-1720.
https://doi.org/10.1007/s00604-016-1801-z
Hu M., Kang W., Zhao Y., Shia J., Cheng B. RSC Adv. 2017, 7, 26849-26856.
https://doi.org/10.1039/C7RA02040F
Hu M., Kang W., Zhong Z., Cheng B., Xing W. Ind. Eng. Chem. Res. 2018, 57(34), 11668-11674.
https://doi.org/10.1021/acs.iecr.8b02902
Wang B., Chen Z., Zuo X., Wu Y., He C., Wang X., Li Z. Sensor. Actuat., B-Chem. 2011, 160, 1-6.
https://doi.org/10.1016/j.snb.2011.06.049
Muthukumar P., John S.A. Sensor. Actuat. B-Chem. 2012, 174, 74-80.
https://doi.org/10.1016/j.snb.2012.08.022
Castillero P., Roales J., Lopes-Costa T., Sanchez-Valencia J.R., Barranco A., Gonzalez-Elipe A.R., Pedrosa J.M. Sensors 2017, 17, 24-38.
https://doi.org/10.3390/s17010024
Kim J., Lim S.-H., Yoon Y., Thangadurai T.D., Yoon S. Tetrahedron Lett. 2011, 52, 2645-2648.
https://doi.org/10.1016/j.tetlet.2011.03.048
Korposh S., James S.W., Lee S.-W., Topliss S.M., Cheung S.C., Batty W.J., Tatam R.P. Opt. Express 2010, 18, 13227-13238.
https://doi.org/10.1364/OE.18.013227
Jarzebinska R., Korposh S., James S., Batty W., Tatam R., Lee S.-W. Anal. Lett. 2012, 45(10), 1297-1309.
https://doi.org/10.1080/00032719.2012.673097
Wang T., Korposh S., James S.W., Tatam R. P., Lee S-W. Sens. Actuators, B 2016, 228, 573-580.
https://doi.org/10.1016/j.snb.2016.01.058
Korposh S., Kodaira S., Selyanchyn R., Ledezma F.H., James S.W., Lee S.-W. Opt. Laser Tech. 2018, 101, 1-10.
https://doi.org/10.1016/j.optlastec.2017.10.027
Sawada K., Tanaka T., Yokoyama T., Yamachi R., Oka Y., Masai H., Terao J., Uchida K. Jpn. J. Appl. Phys. 2020, 59, 1-6.
https://doi.org/10.35848/1347-4065/ab6b80
Richardson T.H., Brook R.A., Davis F., Hunter C.A. Coll. Sur. A: Physicochem. Eng. Aspects 2006, 284-285, 320-325.
https://doi.org/10.1016/j.colsurfa.2005.11.076
Roales J., Pedrosa J.M., Castillero P., Cano M., Richardson T.H. Thin Solid Films 2011, 519, 2025−2030.
https://doi.org/10.1016/j.tsf.2010.10.038
Roales J., Pedrosa J.M., Guillen M.G., Lopes-Costa T., Castillero P., Barranco A., González-Elipe A.R. Sensors 2015, 15, 11118-11132.
https://doi.org/10.3390/s150511118
Mc Donagh C., Burke C.S., Mc Craith B.D. Chem. Rev. 2008, 108, 400−422.
https://doi.org/10.1021/cr068102g
Peter C., Schmitt K., Apitz M., Woellenstein J. Microsyst. Technol. 2012, 18, 925-930.
https://doi.org/10.1007/s00542-011-1412-x
Abudukeremu H., Kari N., Zhang Y., Wang J., Nizamidin P., Abliz S., Yimit A. J. Mater. Sci. 2018, 53, 10822-10834.
https://doi.org/10.1007/s10853-018-2374-5
Kutilike B., Kari N., Zhang Y., Nizamidin P., Yimit A. Meas. Sci. Technol. 2020, 31, 055105.
https://doi.org/10.1088/1361-6501/ab6e24
Diab N., Schuhmann W. Electrochim. Acta 2001, 47, 265-273.
https://doi.org/10.1016/S0013-4686(01)00565-5
Miki H., Matsubara F., Nakashima S., Ochi S., Nakagawa K., Matsuguchi M., Sadaoka Y. Sens. Actuat. 2016, 231, 458-468.
https://doi.org/10.1016/j.snb.2016.02.145
Shiba S., Yamada K., Matsuguchi M. Sensors 2020, 20, 1295.
https://doi.org/10.3390/s20051295
Khan A.H., Rao M.V., Li Q. Sensors 2019, 19(905), 1-39.
https://doi.org/10.3390/s19040905
Strianese M., Lamberti M., Pellecchi C. Dalton Trans. 2017, 46, 1872-1879.
https://doi.org/10.1039/C6DT04753J
Vikrant K., Kumar V., Ok Y., Kim K., Deep A. Trends Anal. Chem. 2018, 105, 263-281.
https://doi.org/10.1016/j.trac.2018.05.013
Chen J., Zhu Y., Kaskel S. Angew. Chem. Int. Ed. 2020.
https://doi.org/10.1002/anie.201909880
Ma Y., Su H., Kuang X., Li X., Zhang T., Tang, B. Anal. Chem. 2014, 86(22), 11459-11463.
https://doi.org/10.1021/ac503622n
Tuerdi G., Kari N., Yan Y., Nizamidin P., Yimit A. Sensors 2017, 17(12), 2717. doi:10.3390/s17122717.
https://doi.org/10.3390/s17122717
Mamtmin G., Kari N., Abdurahman R., Nizamidin P., Yimit A. Opt. Las. Tech. 2020, 128, 106260.
https://doi.org/10.1016/j.optlastec.2020.106260
Maimaiti A., Abdurahman R., Kari N., Ma Q., Wumaier K., Nizamidin P., Yimit A. J. Modern Opt. 2020, 67(6), 507-514.
https://doi.org/10.1080/09500340.2020.1758817
Amao Y., Okura I. J. Porphyrins Phthalocyanines 2009, 13, 1111-1122.
https://doi.org/10.1142/S1088424609001455
Hutter L.H., Muller B.J., Koren K., Borisov S.M., Klimant I. J. Mater. Chem. C 2014, 2, 7589-7598.
https://doi.org/10.1039/C4TC00983E
Kimura T., Watanabe S., Sawada S., Shibasaki Y., Oishi Y. J. Polym. Sci., A: Pol. Chem. 2017, 55, 1086-1094.
https://doi.org/10.1002/pola.28469
Arunkumar C., Kooriyaden F. R., Zhang X., Sujatha S., Zhao J. New J. Chem. 2017, 41, 4908-4917.
https://doi.org/10.1039/C7NJ01141E
Biring S., Sadhu A.S., Deb M. Sensors 2019, 19, 5124.
https://doi.org/10.3390/s19235124
Mao Y., Gao Y., Wu S., Wu S., Shi J., Zhou B., Tian Y. Sens. Actuat. B: Chem. 2017, 251, 495-502.
https://doi.org/10.1016/j.snb.2017.05.081
Mao Y., Mei Z., Wen J., Li G., Tian Y., Zhou B., Tian Y. Sens. Actuat. 2018, B257, 944-953.
https://doi.org/10.1016/j.snb.2017.11.042
Mao Y., Akram M., Shi J., Wen J., Yang C., Jiang J., Zhou B., Tian Y. Sens. Actuat. B: Chem. 2019, 282, 885-895.
https://doi.org/10.1016/j.snb.2018.11.143
Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Cote D., Vinogradov S.A., Scadden D.T., Lin C.P. Nature 2014, 508, 269-273.
https://doi.org/10.1038/nature13034
The Porphyrin Handbook. Biochemistry and Binding: Activation of Small Molecules. Vol. 4. (Kadish K.M., Smith K.M., Guilard R., Eds.) New York: Academ. Press, 2000. 341 p.
Porphyrins: Spectroscopy, Electrochemistry, Applications. (Enikolopyan N.S., Ed.) Moscow: Nauka, 1987. 384 p.
Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Russ. Chem. Rev. 2005, 74(8), 765-780.
https://doi.org/10.1070/RC2005v074n08ABEH001056
Zaitsev S.Yu. Supramolecular Nanoscale Systems at the Interface of the Phases. Concepts and Perspectives for Bionanotechnologies. М.: LENAND, 2010. 212 p.
Kitzerow H-S, Bahr C. Chirality in Liquid Crystals. New York (NY): Springer-Verlag Inc, 2001.
https://doi.org/10.1007/b97374
Kelly S.M., O'Neill M. Liquid Crystals for Electro-Optic Applications. In: Handbook of Advanced Electronic and Photonic Materials and Devices Vol. 7: Liquid Crystals, Display and Laser Materials. (Nalwa H.S., Ed.) N.Y. etc.: Academic Press, 2000. p. 1-66.
https://doi.org/10.1016/B978-012513745-4/50057-3
Onuchak L.A., Arutunov J.I., Kuraeva J.G., et.al. Method for Analysis of Structural and Optical Isomers, 2014, Patent RF No RU 2528126.
Matt B., Pondman K.M., Asshoff S.J., et al. Angew. Chem. Int. Edit. 2014, 53, 12446.
https://doi.org/10.1002/anie.201404312
Eelkema R. Liq. Cryst. 2011, 38, 1641-1652.
https://doi.org/10.1080/02678292.2011.600779
Cachelin P., Green J.P., Peijs T., Heeney M., Bastiaansen W.M. Adv. Opt. Mater. 2016, 4, 592-596.
https://doi.org/10.1002/adom.201500549
Iwan A., Boharewicz B., Tazbir I., Hamplová V., Bubnov A. Solid-State Electronics 2015, 104, 53-60.
https://doi.org/10.1016/j.sse.2014.11.010
Ishida Y., Kai Y., Kato S., et al. Angew. Chem. Int. Edit. 2008, 47, 8241-8245.
https://doi.org/10.1002/anie.200803242
Van Delden R.A., Koumura N., Harada N., Feringa B.L. PNAS. 2002, 99, 4945-4949.
https://doi.org/10.1073/pnas.062660699
Gottarelli G., Spada G.P. Mol. Cryst. Liq. Cryst. 1985, 123(1), 377-388.
https://doi.org/10.1080/00268948508074792
Celebre G., de Luca G., Maiorino M., et al. J. Amer. Chem. Soc. 2005, 127, 11736-11744.
https://doi.org/10.1021/ja051589a
Watanabe G., Yoshida J. J. Phys. Chem. B 2016, 120, 6858-6864.
https://doi.org/10.1021/acs.jpcb.6b04669
Yoshida J., Watanabe G., Kakizawa K., et al. Inorg. Chem. 2013, 52, 11042-11050.
https://doi.org/10.1021/ic401240f
Engelmann M., Braun M., Kuball H‐G. Liq. Cryst. 2007, 34, 73-77.
https://doi.org/10.1080/02678290601061496
Braun M., Hahn A., Engelmann M., et al. Chem. Eur. J. 2005, 11, 3405-3412.
https://doi.org/10.1002/chem.200401292
Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine.Vol. 7. Physicochemical Characterization. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing: Co. Pte. Ltd., 2010.
Kobayashi N. Optically Active Porphyrin Systems Analyzed by Circular Dichroism. In: Handbook of Porphyrin Science. Vol. 7. Ch. 33. (Kadish K.M., Smith K.M., Guilard R., Eds.) Singapore: World Scientific, 2010. p.147−240.
https://doi.org/10.1142/9789814307246_0005
Lu H., Kobayashi N. Chem Rev. 2016, 116, 6184-6261.
https://doi.org/10.1021/acs.chemrev.5b00588
Lehmann M., Dechant M., Gerbig L., et al. Liq. Cryst. 2019, 46, 1985-1994.
https://doi.org/10.1080/02678292.2019.1618936
Burmistrov V.A., Novikov I.V., Aleksandriiskii V.V., et al. J. Mol. Liq. 2019, 287, 110961.
https://doi.org/10.1016/j.molliq.2019.110961
Burmistrov V.A., Novikov I.V., Alexandriiskii V.V., Semeikin A.S., Koifman O.I. Liq. Cryst. 2020. DOI:10.1080/02678292.2020.1817583.
https://doi.org/10.1080/02678292.2020.1817583
Davankov V.A. Ligand Exchange Chromatography. Encyclopedia of Separation Science.Vol. 5. (Wilson I.D., Adlard E.R., Cooke M., Pool C.F., Eds.) Amsterdam: Acad.Press, 2000. p. 2369-2380.
https://doi.org/10.1016/B0-12-226770-2/03111-2
Davankov V., Navratil J., Walton H. Ligand Exchange Chromatography. USA: SRC-Press, 1988. 209 p.
Wenzel T.J., Yarmaloff L.W., St.Cyr L.Y., O'Meara L.J., Donatelli M., Bauer R.W. J. Chromatogr. 1987, 396, 51-64.
https://doi.org/10.1016/S0021-9673(01)94042-7
Burmistrov V.A., Rodicheva J.A., Trifonova I.P., Koifman O.I. Modern Tendencies in Materials Functionalization by Macroheterocycles. In: Functional Materials Based on Tetrapyrrole Macrocyclic Compounds. Chapter 1. (Koifman O.I., Ed.) URSS, 2019. p. 17-62.
Krestov A.G., Blokhina S.V., Galyametdinov Yu.G., Ol'khovich M.V., Lokhanov V.V. Russ. J. Phys. Chem. 1993, 67(1), 151-154.
Kuvshinov G.V., Maizlish V.E., Kuvshinova S.A., Burmistrov V.A., Koifman O.I. Macroheterocycles 2016, 9(3), 244-249.
https://doi.org/10.6060/mhc160318k
Burmistrov V.A., Semeikin A.S., Kuvshinov G.V., Aleksandriiskii V.V., Lubimova T.V., Kuvshinova S.A., Koifman O.I. J. Porphyrins Phthalocyanines 2017, 21, 103-109.
https://doi.org/10.1142/S1088424617500110
Sanders J.K.M., Bampos N., Clude-Watson Z., Darling S.L., Hawley J.C., Kim H.-J., Mak C.C., Webb S.J. Axial Coordination Chemistry of Metalloporphyrins. In: The Porphyrin Handbook, Vol. 3, Ch. 15. (Kadish K.M., Smit K.M., Guilard R., Eds.) New York: Academ. Press, 2000. p. 1-47.
Grajek H., Witkiewicz Z., Purchała M., Drzewin'ski W. Chromatographia 2016, 79, 1217-1245.
https://doi.org/10.1007/s10337-016-3154-5
Burmistrov V.A., Semeikin A.S., Lubimova T.V., Novikov I.V., Litov K.M., Aleksandriiskii V.V., Kuvshinova S.A., Koifman O.I. Nickel Complex of 5,10,15,20-tetrakis[3',5'-di-(2'-methylbutyloxy)phenyl]-porphin Exhibiting the Stationary Phase Property for Gas Chromatography, 2015, Patent RF No 2557655.
Allenmark S.G. Chromatographic Enantioseparation: Methods Applications. Chichester: Horwood, 1988. 224 p.
Kuvshinov G.V., Koifman O.I. Russ. J. Phys. Chem. A 2018, 92(10), 2025-2031.
https://doi.org/10.1134/S0036024418100163
Kuvshinov G.V., Kuvshinova S.A., Burmistrov V.A., Koifman O.I. Sorbent for Gas Chromatography, 2017, Patent RF No 2621 337.
Kuvshinov G.V., Kuvshinova S.A., Koifman O.I. J. Anal. Chem. 2017, 72(11), 1172-1177.
https://doi.org/10.1134/S1061934817110065
Kuvshinov G.V., Koifman O.I. Russ. J. Gen. Chem. 2019, 89, 1279-1285.
https://doi.org/10.1134/S1070363219060240
Executive Orders №1629n dated 29.12.2012 and №915n dated 15.11.2012 of the Ministry of Health of the Russian Federation.
Abrahamse H., Hamblin M. Biochem. J. 2016, 473, 347-364.
https://doi.org/10.1042/BJ20150942
Kwiatkowski S., Knap B., Przystupski D. et al. Biomedicine & Pharmacotherapy 2018, 106, 1098-1107.
https://doi.org/10.1016/j.biopha.2018.07.049
Zhang X.H., Zhang L.J., Sun J.J. et al. Biomedicine & Pharmacotherapy 2016, 81, 265-272.
https://doi.org/10.1016/j.biopha.2016.04.007
Mironov A.F. Russ. J. Gen. Chem. 2019, 89, 1952-1983.
https://doi.org/10.1134/S1070363219090354
Ethirajan Y., Chen Y., Joshi P., Pandey R.K. Chem. Soc. Rev. 2011, 40, 340-362.
https://doi.org/10.1039/B915149B
Senge M.O., Brandt J.C. Photochem. Photobiol. 2011, 87, 1240-1296.
https://doi.org/10.1111/j.1751-1097.2011.00986.x
Bonnett R. Chemical Aspects of Photodynamic Therapy. Amsterdam: Gordon and Breach Science Publishers, 2000.
https://doi.org/10.1201/9781482296952
Muragaki Y., Akimoto J., Manuyama T. et al. J. Neurosung. 2013, 119, 845-852.
https://doi.org/10.3171/2013.7.JNS13415
Kobayashi W., Liu Q., Nakagawa H. et al. Oral. Oncol. 2006, 42, 45-49.
https://doi.org/10.1016/j.oraloncology.2005.05.009
Saavedra R., Rocha L.B., Dabrowski J.M. et al. Chem. Med. Chem. 2014, 9, 390-398.
https://doi.org/10.1002/cmdc.201300449
Shan W.M., Lim T.H., Pece A., et al. Graefes. Arch. Clin. Exp. Ophthalmol. 2010, 248, 613-626.
https://doi.org/10.1007/s00417-010-1307-z
Sessler J.L., Miller R.A. Biochem. Pharmacol. 2000, 59, 733-739.
https://doi.org/10.1016/S0006-2952(99)00314-7
Josefsen L.B., Boyle R.W. Metal-Based Drugs 2008, 200, 1-24.
https://doi.org/10.1155/2008/276109
Scherz A., Salomon Y. The Story of Tookad, From Bench to Bedside. In: Handbook of Photomedicine. (Hamblin M.R., Huang Y.Y., Eds.) CRC Press, Boca Raton, FL, 2014.
https://doi.org/10.1201/b15582-43
Chevalier S., Anidjar M., Scarlata E., et al. J. Urol. 2011, 196, 302-309.
https://doi.org/10.1016/j.juro.2011.03.039
Ashur I., Goldschmidt R., Pinkas I., et al. J. Phys. Chem. A 2009, 113, 8027-8037.
https://doi.org/10.1021/jp900580e
Scherz A., Salomon Y., Coleman. J. Photodiagn. Photodyn. Ther. 2017, 17, 22-31.
https://doi.org/10.1016/j.pdpdt.2017.01.049
Lobel J., MacDonald I.J., Ciesielski M.Y., et al. Laser Surg. Med. 2001, 29, 397-405.
https://doi.org/10.1002/lsm.10001
Peng Q., Berg K., Moan J., et al. Photochem. Photobiol. 1997, 65, 235-251.
https://doi.org/10.1111/j.1751-1097.1997.tb08549.x
Krammer B., Plaetzer K. Photochem. Photobiol. Sci. 2008, 7, 283-289.
https://doi.org/10.1039/B712847A
Furre I.E., Shahzidi S., Luksiene Z., et al. Cancer Res. 2005, 65, 11051-11060.
https://doi.org/10.1158/0008-5472.CAN-05-0510
Romanko Y.S., Tsyb A.F., Kaplan M.A., et al. Bull. Exp. Biol. Med. 2004, 138, 584-589.
https://doi.org/10.1007/s10517-005-0133-5
Petrov P., Trukacheva T., Kaplan M., 2006, European Patent Application EP 1610821.
Biswas R., Moon J.H., Ahn J.C. Photochem. Photobiol. 2014, 90, 1108-1118.
https://doi.org/10.1111/php.12273
Pucelic B.L., Arnaut G., Stochel G., et al. ACS Appl. Mater. Interfaces 2016, 8, 22039-22055.
https://doi.org/10.1021/acsami.6b07031
Santos L.L., Oliveira J., Monteiro E., et al. Case Rep. Oncol. 2018, 11, 769-776.
https://doi.org/10.1159/000493423
Ormond A.B., Freeman H.S. Materials 2013, 6, 817-840.
https://doi.org/10.3390/ma6030817
Pereira P.M.R., Korsak B., Sarmento B., et al. Org. Biomol. Chem. 2015, 13, 2518-2529.
https://doi.org/10.1039/C4OB02334J
Moret F., Reddi E. J. Porphyrins Phthalocyanines 2017, 21, 1-18.
https://doi.org/10.1142/S1088424616501273
Pucelik B., Sułek A., Dąbrowski J.M. Coord. Chem. Rev. 2020, 416 , 213340. https://doi.org/10.1016/j.ccr.2020.213340
Mironov A.F., Zhdanova K.A., Bragina N.A. Russ. Chem. Rev. 2018, 87, 859-881.
https://doi.org/10.1070/RCR4811
Sandland J., Malatesti N., Boyle R. Photodiagnosis Photodyn. Ther. 2018, 23, 281-294.
https://doi.org/10.1016/j.pdpdt.2018.06.023
Boyle R.W., Sandland J. Bioconjugate Chem. 2019, 30, 975-993.
https://doi.org/10.1021/acs.bioconjchem.9b00055
Hamblin M.R. Photochem. Photobiol. 2020, 96, 506-516.
https://doi.org/10.1111/php.13190
Sato K., Nagaya T., Choyke P.L., et al. Theranostics 2015, 5, 698-709.
https://doi.org/10.7150/thno.11559
Parslow A.C., Parakh S., Lee F.T. Biomedicines 2016, 4, 14-31.
https://doi.org/10.3390/biomedicines4030014
You H., Yoon H.E., Jeong P.M., et al. Bioorg. Med. Chem. 2015, 23, 1453-1462.
https://doi.org/10.1016/j.bmc.2015.02.014
Yang N.J., Hinner M.J. Meth. Mol. Biol. 2015, 126, 29-53.
https://doi.org/10.1007/978-1-4939-2272-7_3
Park S.Y., Baik H.J., Oh Y.T., et al. Angew. Chem. Int. Ed. Engl. 2011, 50, 1644-1647.
https://doi.org/10.1002/anie.201006038
Singh S., Aggarwal A., Dinesh N.V.S., et al. Chem. Rev. 2015, 115, 10261-10306.
https://doi.org/10.1021/acs.chemrev.5b00244
El-Akra N., Noirot A., Faye J.C., et al. Photochem. Photobiol. Sci. 2006, 5, 996-999.
https://doi.org/10.1039/B606117F
Stefflova K., Li H., Chen J., et al. Bioconjugate Chem. 2007, 18, 379-388.
https://doi.org/10.1021/bc0602578
Gravier J., Schneider R., Frochot C., et al. J. Med. Chem. 2008, 51, 3867-3877.
https://doi.org/10.1021/jm800125a
Suvorov N.V., Mironov A.F., Grin M.A. Russ. Chem. Bull. 2017, 1982-2008.
https://doi.org/10.1007/s11172-017-1973-7
Barondes S.H., Castronovo V., Cooper D.N.W., et al. Cell 1994, 76, 597-598.
https://doi.org/10.1016/0092-8674(94)90498-7
Zheng X., Pandey R.K. Anti-Cancer Agents in Med. Chem. 2008, 8, 241-268.
https://doi.org/10.2174/187152008783961897
Aksenova A.A., Sebyakin Yu.L., Mironov A.F. Russ. J. Bioorg. Chem. 2000, 26, 111-124.
https://doi.org/10.1007/BF02759156
Aksenova A.A., Sebyakin Yu.L., Mironov A.F. Russ. J. Bioorg. Chem. 2001, 27, 124-129.
https://doi.org/10.1023/A:1011389321240
Mironov A.F., Lebedeva V.S. Tetrahedron Lett. 1998, 39, 905-908.
https://doi.org/10.1016/S0040-4039(97)10687-6
Lebedeva V.S., Ruziev R.D., Popov A.V., et al. Mendeleev Commun. 2007, 17, 212-213.
https://doi.org/10.1016/j.mencom.2007.06.008
Lonin I.S. Ph.D. Thesis in Chemical Science "Synthesis and Examination of Properties of Natural Chlorins and Bacteriochlorins", Moscow, 2009. (in Russ.).
Lonin I.S., Lakhina A.A., Grin M.A., et al. Mendeleev Commun. 2012, 22, 157-158.
https://doi.org/10.1016/j.mencom.2012.05.016
Grin M.A., Lonin I.S., Makarov A.I., et al. Mendeleev Commun. 2008, 18, 135-137.
https://doi.org/10.1016/j.mencom.2008.05.008
Lonin I.S., Makarov A.I., Lakhina A.A., et al. J. Porphyrins Phthalocyanines 2008, 12, 619.
Grin M.A., Lonin I.S., Lakhina A.A., Ol'shanskaya E.S., Makarov A.I., Sebyakin Y.L., Guryeva L.Yu., Toukach P.V., Kononikhin A.S., Kuzmin V.A., Mironov A.F. J. Porphyrins Phthalocyanines 2009, 13, 336-345.
https://doi.org/10.1142/S1088424609000425
Grin M.A., Plotnikova E.A., Plyutinskaya A.D., et al. Russ. Biother. J. 2012, 11, 14.
Petrov P., Trukhacheva T., Isakov G., et al. Acta Bioopt. Inform. Med. 2004, 10, 6-7.
Trukhacheva T.V., Shlyahtin S.V., Isakov G.A., et al. Fotolon - A Novel Solution for PDT. Review of the Results of Pharmaceutical, Pharmacological and Clinical Trials. Minsk: RUP "Belmedpreparaty", 2009. p. 64. ISBN 978-5-89552-367-4.
Kularatne S.A., Venkatesh C., Santhapuram H.K.R., et al. J. Med. Chem. 2010, 53, 7767-7777.
https://doi.org/10.1021/jm100729b
Hillier S.M., Maresca K.P., Lu G., et al. J. Nucl. Med. 2013, 54, 1369-1376.
https://doi.org/10.2967/jnumed.112.116624
Stoermer D., Liu Q., Hall M.R., et al. Bioorg. Med. Chem. Lett. 2003, 13, 2097-2100.
https://doi.org/10.1016/S0960-894X(03)00407-4
Hargus J.A., Fronczek F.R., Vicente M.G.H., Smith K.M. Photochem. Photobiol. 2007, 83, 1006-1015.
https://doi.org/10.1111/j.1751-1097.2007.00092.x
Jinadasa R.G.W., Hu X., Vicente M.G.H., Smith K.M. J. Med. Chem. 2011, 54, 7464-7476.
https://doi.org/10.1021/jm2005139
Jinadasa R.G.W., Zhou Z., Vicente M.G.H., Smith K.M. Org. Biomol. Chem. 2016, 14, 1049-1064.
https://doi.org/10.1039/C5OB02241J
Bommer J.C., Ogden B.F. Tetrapyrrole Therapeutic Agents, 1987, U.S. Patent 4,693.885.
Pandey R.K., Zheng G. Porphyrins as Photosensitizers in Photodynamic Therapy. In: The Porphyrin Handbook. Vol. 6. (Kadish K. M., Smith K. M., Guilard R., Eds.) Boston: Academic Press, 2000. p. 157-230.
Suvorov N.V. Ph.D. Thesis in Chemical Science "Modified Natural Chlorins of Targeted Action Against Tumor Cells of Various Genesis", Moscow, 2019.
Grin M.A., Suvorov N.V., Machulkin A.E., et al., 2018, Patent RU 2670087 C1.
Oliveira B.L., Guo Z., Bernardes G.J.L. Chem. Soc. Rev. 2017, 46, 4895-4950.
https://doi.org/10.1039/C7CS00184C
Suvorov N.V., Cheskov D.A., Mironov A.F., et al. Mendeleev Commun. 2019, 29, 206-207.
https://doi.org/10.1016/j.mencom.2019.03.031
Suvorov N.V., Machulkin A.E., Ivanova A.V., et al. J. Porphyrins Phthalocyanines 2018, 22, 1030-1038.
https://doi.org/10.1142/S1088424618501006
Selbo P.K., Bostad M., Olsen C.E., et al. Photochem. Photobiol. Sci. 2015, 14, 1433-1450.
https://doi.org/10.1039/C5PP00027K
Sultan A.A., Jerjes W., Berg K., et al. Lancet Oncol. 2016, 17, 1217-1229.
https://doi.org/10.1016/S1470-2045(16)30224-8
Kochneva E.V., Filonenko E.V., Vakulovskaya E.G., et al. Photodiagnosis Photodyn. Ther. 2010, 7, 258-267.
https://doi.org/10.1016/j.pdpdt.2010.07.006
Shiryaev A.A., Musaev G.K., Levkin V.V., et al. Photodiagnosis Photodyn. Ther. 2019, 26, 218-223.
https://doi.org/10.1016/j.pdpdt.2019.04.006
Baker M. Nature 2010, 463, 977-980.
https://doi.org/10.1038/463977a
Thorp-Greewood F.L., Coogan M.P. Dalton Trans. 2011, 40, 6129-6143.
https://doi.org/10.1039/c0dt01398f
Mewis R.E., Archibald S.J. Coord. Chem. Rev. 2010, 254, 1682-1712.
https://doi.org/10.1016/j.ccr.2010.02.025
Rashid H.U., Khan K., Yaseen M., et al. Rev. Roum. Chim. 2014, 59, 27-33.
Grin M.A., Brusov S.S., Shchepelina E.Y., et al. Mendeleev Commun. 2017, 27, 338-340.
https://doi.org/10.1016/j.mencom.2017.07.005
Mironov A.F. Transition Metal Complexes of Porphyrins and Porphyrinoids. In: Handbook of Porphyrin Science. Vol 18. Applications and Materials. (Kadish K.M., Smith K.M., Guillard R., Eds). World Scientific, 2012. p. 304-413.
https://doi.org/10.1142/9789814335508_0012
Rumyantseva V.D., Shchelkunova A.E., Gorshkova A.S., Alekseev Yu.V., Shumilova N.M., Shilov I.P., Ivanov A.V., Mironov A.F. Fine Chem. Technol. 2017, 12, 72-80.
https://doi.org/10.32362/2410-6593-2017-12-2-72-80
Smirnov A.S., Grin M.A., Mironov A.F. Fine Chem. Technol. 2019, 14, 95-103.
https://doi.org/10.32362/2410-6593-2019-14-6-95-103
Brusov S.S. Ph.D. Thesis in Chemical Science "Natural Chlorins with Photoinduced Antibacterial, Antitumor Activity and Diagnostic Potential", Moscow, 2018.
Zenkevich E., Sagun E., Knyukshto V., Shulga A., Mironov A., Efremova O., Bonnett R., Songca S.P., Kassem M.J. Photochem. Photobiol. B: Biol. 1996, 33, 171-180.
https://doi.org/10.1016/1011-1344(95)07241-1
Parkhats M.V., Galievsky V.A., Stashevsky A.S., Trukhacheva T.V., Dzhagarov B.M. Opt. Spectrosc. 2009, 107(6), 974-980.
https://doi.org/10.1134/S0030400X09120200
Henderson B.W., Sumlin A.B., Owcharczak B.L., Dougherty T.J. Photochem.Photobiol. B 1991, 10, 303-313.
https://doi.org/10.1016/1011-1344(91)80016-B
Koudinova N.V., Pinthus J.H., Brandis A., Brenner O., Bendel P., Ramon J., Eshhar Z., Scherz A., Salomon Y. Int. J. Cancer 2003, 104, 782-789.
https://doi.org/10.1002/ijc.11002
Brandis A., Mazor O., Neumark E., Rozenbach V.-Belkin, Salomon Y., Scherz A. Photochem. Photobiol. 2005, 81, 983-993.
https://doi.org/10.1562/2004-12-01-RA-389R1.1
Grin M.A., Mironov A.F., Shtil A.A. Anti-Cancer Agents in Med. Chem. 2008, 8, 683-697.
https://doi.org/10.2174/187152008785133128
Grin M.A., Mironov A.F. In: Chemical Processes with Participation of Biological and Related Compounds (Lomova T.N., Zaikov G. T., Ed.) Boston, Brill: Leiden, 2008. p. 5-43.
Eisner U. J. Chem. Soc. 1957, 3461-3469.
https://doi.org/10.1039/jr9570003461
Scheer H. Chlorophylls. Boston, London: CRC Press, Boca Raton Ann Arbor, 1991. p. 115-143.
Mironov A.F., Efremov A.V., 1996, Patent RF No 2144085.
Tsygankov A.A., Laurinavichene T.V., Gogotov I.N. Biotechnol. Tech. 1994, 8, 575-578.
https://doi.org/10.1007/BF00152149
Tsygankov A.A., Laurinavichene T.V., Bukatin V.E., Gogotov I.N., Hall D.O. Biochem. Microbiol. 1997, 33, 485-490.
Prinsep M.R., Caplan F.R., Moore R.E., Patterson G.M.L., Smith C.D. J. Am. Chem. Soc. 1992, 114, 385-387.
https://doi.org/10.1021/ja00027a072
Prinsep M.R., Patterson G.M.L., Larsen L.K., Smith C. D. Tetrahedron 1995, 51, 10523-10530.
https://doi.org/10.1016/0040-4020(95)00615-F
Prinsep M.R., Patterson G.M.L., Larsen L.K., Smith C. D. J. Nat. Prod. 1998, 61, 1133-1136.
https://doi.org/10.1021/np970566+
Prinsep M.R., Appleton T.G., Hanson G.R., Lane I., Smith C.D., Puddick J., Fairlie, D.P. Inorg. Chem. 2017, 56, 5577-5585.
https://doi.org/10.1021/acs.inorgchem.6b03000
Minehan T.G., Kishi Y. Angew. Chem. Int. Ed. 1999, 38, 923−925.
https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<923::AID-ANIE923>3.0.CO;2-7
Minehan T.G., Cook-Blumberg L., Kishi Y., Prinsep M.R., Moore R.E. Angew. Chem. Int. Ed. 1999, 38, 926−928.
https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<926::AID-ANIE926>3.0.CO;2-W
Hoebeke M., Schuitmaker H.J., Jannink L.E., et al. Photochem. Photobiol. 1997, 66, 502-508.
https://doi.org/10.1111/j.1751-1097.1997.tb03180.x
Fiedor L., Rosenbach-Belkin V., Sai M., Scherz A. Plan. Physiol. Biochem. 1996, 34, 393-398.
Scherz A., Salomon Y., Brandis A., Scheer H., 2000, PCT Patent WO00/33833.
Ashur I., Goldschmidt R., Pinkas I., Salomon Y., Szewczyk G., Sarna T., Scherz A. J. Phys. Chem. A 2009, 113, 8027-8037.
https://doi.org/10.1021/jp900580e
Azzouzi A. R., Barret E., Bennet J., Moore C., Taneja S., Muir G., Villers A., Coleman J., Allen C., Scherz A., Emberton M. World J. Urology 2015, 33 , 945-953.
https://doi.org/10.1007/s00345-015-1505-8
Vakrat-Haglili Y., Weiner L., Brumfeld V., Brandis A., Salomon Y., McIlroy B., Wilson B.C., Pawlak A., Rozanowska M., Sarna T., Scherz A. J. Am. Chem. Soc. 2005, 127, 6487-6497.
https://doi.org/10.1021/ja046210j
Sasaki S., Tamiaki H. J. Org. Chem. 2006, 71, 2648-2654.
https://doi.org/10.1021/jo0523969
Mironov A.F., Kozyrev A.N., Brandis A.S. Proc. SPIE 1992, 1922, 204-208.
Fischer H., Lambrecht R., Mittenzwei H.Z. Physiol. Chem. 1939, 1, 253-259.
Hartwich G., Fiedor L., Simonin I., Cmiel E., Schafer W., Noy D., Scherz A., Scheer H. J. Am. Chem. Soc. 1998, 120, 3675-3683.
https://doi.org/10.1021/ja970874u
Kozyrev A.N., Chen Y., Goswami L.N., Tabaczynski W.A., Pandey R.K. J. Org.Chem. 2006, 71, 1949-1960.
https://doi.org/10.1021/jo052334i
Waielewski M.R., Svec W.A. J. Org. Chem. 1980, 45, 1969-1974.
https://doi.org/10.1021/jo01298a043
Chen Y., Potter W.R., Missert J.R., Morgan J., Pandey R.K. Bioconjugate Chem. 2007, 18, 1460-1473.
https://doi.org/10.1021/bc070092i
Saga Y., Ishitani A., Takahashi N., Kawamura K. Bioorg. Med. Chem. Lett. 2015, 25, 639-641.
https://doi.org/10.1016/j.bmcl.2014.12.002
Kozyrev A., Ethirajan, M., Chen P., Ohkubo K., Robinson B.C., Barkigia K.M., Pandey R.K. J. Org. Chem. 2012, 77, 10260-10271.
https://doi.org/10.1021/jo301895p
Kozyrev A.N., Zheng G., Zhu C.F. Tetrahedron Lett. 1996, 37, 6431-6434.
https://doi.org/10.1016/0040-4039(96)01346-9
Pandey R.K., Sumlin A.B., Constantine S., Aoudia M., Potter W.R., Bellnier D.A., Henderson B.W., Rodgers M.A., Smith K.M., Dougherty T.J. Photochem. Photobiol. 1996, 64, 194-204.
https://doi.org/10.1111/j.1751-1097.1996.tb02442.x
Grin M.A., Lonin I.S., Likhosherstov L.M., Novikova O.S., Plyutinskaya A.D., Plotnikova E.A., Kachala V.V., Yakubovskaya R.I., Mironov A.F. J. Porphyrins Phthalocyanines 2012, 16, 1094-1109.
https://doi.org/10.1142/S1088424612500848
Gorshkova A.S., Rumyantseva V.D., Mironov A.F. Fine Chem. Technol. 2018, 13(2), 5-20.
https://doi.org/10.32362/2410-6593-2018-13-2-5-20
Patel N., Pera P., Joshi P., Dukh M., Tabaczynski W.A., Siters K.E., Pandey R.K. J. Med. Chem. 2016, 59, 9774-9787.
https://doi.org/10.1021/acs.jmedchem.6b00890
Plotnikova E.A., Stramova V.O., Morozova N.B., Plyutinskaya A.D., Ostroverkhov P.V., Grin M.A., Mironov A.F., Yakubovskaya R.I., Kaprin A.D. Biomed. Photon. 2019, 8, 18-23.
https://doi.org/10.24931/2413-9432-2019-8-1-18-23
Mironov A.F., Grin M.A., Tsiprovskiy A.G., Kachala V.V., Karmakova T.A., Plyutinskaya A.D., Yakubovskaya R.I. J. Porphyrins Phthalocyanines 2003, 7, 725-730.
https://doi.org/10.1142/S1088424603000902
Mironov A.F., Grin M.A., Tsiprovskiy A.G., Dzardanov D.V., Golovin K.V., Feofanov A.V., 2004, Patent RF No 2223274.
Brusov S.S., Grin M.A., Meerovich G.A., Mironov A.F., Romanova Yu. M., Tiganova I.G., 2017, Patent RF No 2610566.
Pantyushenko I.V., Rudakovskaya P.G., Starovoitova A.V., Mikhailovskaya A.A., Abakumov M.A., Kaplan M.A., Tsigankov A.A., Majouga A.G., Grin M.A., Mironov A.F. Biochemistry 2015, 80, 752-762.
https://doi.org/10.1134/S0006297915060103
Mironov A.F., Grin M.A. J. Porphyrins Phthalocyanines 2008, 12, 1163-1172.
https://doi.org/10.1142/S1088424608000534
Grin M.A., Brittal D.I., Tsiprovskiy A.G., Bregadze V.I., Mironov A.F. Macroheterocycles 2010, 3, 222-227.
https://doi.org/10.6060/mhc2010.4.222
Meerovich I.G., Tsyprovskiy A.G., Meerovich G.A., Barkanova S.V., Borisova L. M., Oborotova N. A., Baryshnikov A.Yu., Mironov A.F. Proc. SPIE 2007, 6427, 64270W1-W9.
Chissov V.I., Yakubovskaya R.I., Mironov A.F., Grin M.A., Plotnikova E.A., Morozova N.B., Tsigankov A.A., 2012, Patent RF No 2521327.
Grin M.A., Filonenko E.V., Mironov A.F., Suvorov N.B., Pankratov A.A., Grigor'evukh N.I., 2020, Patent RF No 2720806.
Aravindu K., Krayer M., Kim H.-J., Lindsey J.S. New J. Chem. 2011, 35, 1376-1384.
https://doi.org/10.1039/c1nj20027e
Senge M.O., Wiehe A., Ryppa C. Adv. Photosynth. Respir. 2006, 25, 27-37.
Lange C., Bednarski P.J. Curr. Pharmac. Design 2016, 22, 6956-6974.
https://doi.org/10.2174/1381612822666161124155344
Pucelik B., Arnaut L.G., Stochel G., Dabrowski J.M. ACS Appl. Mater. Interfaces 2016, 8, 22039-22055.
https://doi.org/10.1021/acsami.6b07031
Karwicka M., Pucelik B., Gonet M., Elas M., Dąbrowski J.M.. Scientific Reports 2019, 9, 12655.
https://doi.org/10.1038/s41598-019-49064-6
Bruhn T., Brückner C. J. Org. Chem. 2015, 80, 4861-4868.
https://doi.org/10.1021/acs.joc.5b00137
Samankumara L.P., Zeller M., Krause J.A., Brückner C. Org. Biomol. Chem. 2010, 8, 1951-1965.
https://doi.org/10.1039/b924539a
Ke X.S., Yang B.Y., Cheng X., Chan S.L.F., Zhang J.L. Chem. Eur. J. 2014, 20, 4324-4333.
https://doi.org/10.1002/chem.201303972
MacGowan S.A., Senge M.O. Chem. Commun. 2011, 47, 11621-11623.
https://doi.org/10.1039/c1cc14686f
MacGowan S.A., Senge M.O. Biochim. Biophys. Acta 2016, 1857, 427-442.
https://doi.org/10.1016/j.bbabio.2016.02.001
Guberman-Pfeffer M.J., Greco J.A., Samankumara L.P., Zeller M., Birge R.R., Gascon J.A., Brückner C. J. Am. Chem. Soc. 2017, 139, 548-560.
https://doi.org/10.1021/jacs.6b12419
Herges R., Peters M.K., 2020, Patent EP 3653226.
Peters M.K., Herges R. Beilstein J. Org. Chem.2017, 13, 2659-2662.
https://doi.org/10.3762/bjoc.13.263
Peters M.K., Röhricht F., Näther C., Herges R. Org. Lett. 2018, 20(24), 7879-7883.
https://doi.org/10.1021/acs.orglett.8b03433
Li G., Graham A., Chen Y., Dobhal M.P., Morgan J., Zheng G., Kozyrev A., Oseroff A., Dougherty T.J., Pandey R.K. J. Med. Chem. 2003, 46, 5349-5359.
https://doi.org/10.1021/jm030341y
Kim H.-J., Lindsey J.S. J. Org. Chem. 2005, 70, 5475-5486.
https://doi.org/10.1021/jo050467y
Krayer M., Ptaszek M., Kim H.-J., Meneely K.R., Fan D., Secor K., Lindsey J.S. J. Org. Chem. 2010, 75, 1016-1039.
https://doi.org/10.1021/jo9025572
Reddy K.R., Lubian E., Pavan M.P., Kim H.-J., Yang E., Holten D., Lindsey J.S. New J. Chem. 2013, 37, 1157-1173.
https://doi.org/10.1039/c3nj41161c
Zhang S., Kim H.-J, Tang Q., Yang E., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2016, 40, 5942-5956.
https://doi.org/10.1039/C6NJ00517A
Liu Y., Lindsey J.S. J. Org. Chem. 2016, 81, 11882−11897.
https://doi.org/10.1021/acs.joc.6b02334
Esemoto N.N., Yu Z., Wiratan L., Satraitis A., Ptaszek M. Org. Lett. 2016, 18, 4590-4593.
https://doi.org/10.1021/acs.orglett.6b02237
Bennion M.C., Burch M.A., Dennis D.G., Lech M.E., Neuhaus K., Fendler N.L., Parris M.R., Cuadra J.E., Dixon C.F., Mukosera G.T., Blauch D.N., Hartmann L., Snyder N.L., Ruppel, J.V. Eur. J. Org. Chem. 2019, 2019, 6496-6503.
https://doi.org/10.1002/ejoc.201901128
Ogata F., Nagaya T., Maruoka Y., Akhigbe J., Meares A., Lucero M.Y., Satraitis A., Fujimura D., Okada R., Inagaki F., Choyke P.L., Ptaszek M., Kobayashi H. Bioconjugate Chem. 2019, 30, 169-183.
https://doi.org/10.1021/acs.bioconjchem.8b00820
Ballatore M.B., Milanesio M.E., Fujita H., Lindsey J.S., Durantini E.N. J. Biophotonics 2020, 13, e201960061.
https://doi.org/10.1002/jbio.201960061
Jiang J., Taniguchi M., Lindsey J.S. New J. Chem. 2015, 39, 4534-4550.
https://doi.org/10.1039/C5NJ00209E
Vairaprakash P., Yang E., Sahin T., Taniguchi M., Krayer M., Diers J.R., Wang A., Niedzwiedzki D.M., Kirmaier C., Lindsey J.S., Bocian D.F., Holten D. J. Phys. Chem. B 2015, 119, 4382-4395.
https://doi.org/10.1021/jp512818g
Krayer M., Yang E., Diers J.R., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2011, 35, 587-601.
https://doi.org/10.1039/c0nj00771d
Fujita H., Jing H., Krayer M., Allu S., Veeraraghavaiah G., Wu Z., Jiang J., Diers J.R., Magdaong N.C.M., Mandal A.K., Roy A., Niedzwiedzki D.M., Kirmaier C., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2019, 43, 7209-7232.
https://doi.org/10.1039/C9NJ01113G
Zhang S., Lindsey J.S. J. Org. Chem. 2020, 82, 2489-2504.
https://doi.org/10.1021/acs.joc.6b02878
Woodward R.B., Ayer W.A. Beaton J.M., Bickelhaupt F., Bonnett R., Buchschacher P., Closs G.L., Dutler H., Hannah J., Hauck F.P., Itô S., Langemann A., Le Goff E., Leimgruber W., Lwowski W., Sauer J., Valenta Z., Volz H. J. Am. Chem. Soc. 1960, 82, 3800−3802.
https://doi.org/10.1021/ja01499a093
Woodward R.B. Pure Appl. Chem. 1961, 2, 383−404.
https://doi.org/10.1351/pac196102030383
Liu M., Chen C.-Y., Hood D., Taniguchi M., Diers J.R., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2017, 41, 3732-3744.
https://doi.org/10.1039/C6NJ04135C
van Straten D., Mashayekhi V., de Bruijn H.S., Oliveira S., Robinson D. J. Cancers (Basel) 2017, 9, 1-54.
https://doi.org/10.3390/cancers9020019
Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B.C., Golab J. Cancer J. Clin. 2017, 61, 250-281.
https://doi.org/10.3322/caac.20114
Babilas P., Schreml S., Landthaler M., Szeimies R.-M. Photodermatol. Photoimmunol. Photomed. 2010, 26, 118-132.
https://doi.org/10.1111/j.1600-0781.2010.00507.x
Kharkwal G.B., Sharma S.K., Huang Y.Y., Dai T., Hamblin M.R. Lasers Surg. Med. 2011, 43, 755-767.
https://doi.org/10.1002/lsm.21080
Allison R.R., Sibata C.H. Photodiagnosis Photodyn. Ther. 2010, 7, 61-75.
https://doi.org/10.1016/j.pdpdt.2010.02.001
Knap B., Przystupski D., Saczko J., Ewa K., Knap-czop K., Kotli J., Michel O., Kotowski K. Kulbacka J. 2018, 106, 1098-1107.
https://doi.org/10.1016/j.biopha.2018.07.049
Zhang J., Jiang C., Paulo J., Longo F., Bentes R., Zhang H., Alexandre L. Acta Pharm. Sin. B 2018, 8, 137-146.
https://doi.org/10.1016/j.apsb.2017.09.003
Cai L., Gu Z., Zhong J., Wen D., Chen G., He L., Wu J., Gu Z. Drug Discov. Today 2018, 23, 1126-1138.
https://doi.org/10.1016/j.drudis.2018.02.009
Yoo J., Park C., Yi G., Lee D., Koo H. Cancers (Basel) 2019, 11, 640.
https://doi.org/10.3390/cancers11050640
Chen F., Huang G., Huang H. Future Med. Chem. 2020, 12, 161-171.
https://doi.org/10.4155/fmc-2019-0114
Kang B., Opatz T., Landfester K., Wurm F.R. Chem. Soc. Rev. 2015, 44, 8301-8325.
https://doi.org/10.1039/C5CS00092K
Zhao K., Li D., Shi C., Ma X., Rong G., Kang H., Wang X., Sun B. Curr. Drug Deliv. 2016, 13, 494-499.
https://doi.org/10.2174/156720181304160521004609
Lee E., Lee J., Lee I.-H., Yu M., Kim H., Chae S.Y., Jon S. J. Med. Chem. 2008, 51, 6442-6449.
https://doi.org/10.1021/jm800767c
Khatun Z., Nurunnabi M., Reeck G.R., Cho K.J., Lee Y. J. Control. Release 2013, 170, 74-82.
https://doi.org/10.1016/j.jconrel.2013.04.024
Hyung Park J., Kwon S., Lee M., Chung H., Kim J.-H., Kim Y.-S., Park R.-W., Kim I.-S., Bong Seo S., Kwon I. C., Young Jeong S. Biomaterials 2006, 27, 119-126.
https://doi.org/10.1016/j.biomaterials.2005.05.028
Park J.H., Cho Y.W., Son Y.J., Kim K., Chung H., Jeong S.Y., Choi K., Park C.R., Park R.-W., Kim I.-S., Kwon I.C. Colloid Polym. Sci. 2006, 284, 763-770.
https://doi.org/10.1007/s00396-005-1438-7
Voszka I., Galántai R., Maillard P., Csík G. J. Photochem. Photobiol. B Biol. 1999, 52, 92-98.
https://doi.org/10.1016/S1011-1344(99)00107-4
Kaldapa C., Blais J.C., Carré V., Granet R., Sol V., Guilloton M., Spiro M., Krausz P. Tetrahedron Lett. 2000, 41, 331-335.
https://doi.org/10.1016/S0040-4039(99)02085-7
Davoust E., Granet R., Krausz P., Carré V., Guilloton M. Tetrahedron Lett. 1999, 40, 2513-2516.
https://doi.org/10.1016/S0040-4039(99)00259-2
Oulmi D., Maillard P., Guerquin-Kern J.L., Huel C., Momenteau M. J. Org. Chem. 1995, 60, 1554-1564.
https://doi.org/10.1021/jo00111a013
Sol V., Blais J.C., Carré V., Granet R., Guilloton M., Spiro M., Krausz P. J. Org. Chem. 1999, 64, 4431-4444.
https://doi.org/10.1021/jo982499+
Kuzmina N.S., Otvagin V.F., Krylova L.V., Nyuchev A.V., Romanenko Y.V., Koifman O.I., Balalaeva I.V., Fedorov A.Y. Mendeleev Commun. 2020, 30, 159-161.
https://doi.org/10.1016/j.mencom.2020.03.009
Pandey S.K., Zheng X., Morgan J., Missert J.R., Liu T.H., Shibata M., Bellnier D.A., Oseroff A.R., Henderson B.W., Dougherty T.J., Pandey R.K. Mol. Pharm. 2007, 4, 448-464.
https://doi.org/10.1021/mp060135x
Laville I., Figueiredo T., Loock B., Pigaglio S., Maillard P., Grierson D.S., Carrez D., Croisy A., Blais J. Bioorg. Med. Chem. 2003, 11, 1643-1652.
https://doi.org/10.1016/S0968-0896(03)00050-6
Laville I., Pigaglio S., Blais J.C., Loock B., Maillard P., Grierson D.S., Blais J. Bioorg. Med. Chem. 2004, 12, 3673-3682.
https://doi.org/10.1016/j.bmc.2004.04.022
Bautista-Sanchez A., Kasselouri A., Desroches M.C., Blais J., Maillard P., de Oliveira D.M., Tedesco A.C., Prognon P., Delaire J. J. Photochem. Photobiol. B Biol. 2005, 81, 154-162.
https://doi.org/10.1016/j.jphotobiol.2005.05.013
Silva S., Pereira P.M.R., Silva P., Almeida Paz F.A., Faustino M.A.F., Cavaleiro J.A.S., Tomé J.P.C. Chem. Commun. 2012, 48, 3608-3610.
https://doi.org/10.1039/c2cc17561d
Pereira P.M.R., Silva S., Bispo M., Zuzarte M., Gomes C., Girão H., Cavaleiro J.A.S., Ribeiro C.A.F., Tomé J.P.C., Fernandes R. Bioconjugate Chem. 2016, 27, 2762-2769.
https://doi.org/10.1021/acs.bioconjchem.6b00519
Liu F., Rabinovich G.A. Nat. Rev. Cancer 2005, 5, 29-41.
https://doi.org/10.1038/nrc1527
Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Biochim. Biophys. Acta 2015, 1855, 235-247.
https://doi.org/10.1016/j.bbcan.2015.03.003
Yang F., Zhang Y., Liang H. Int. J. Mol. Sci. 2014, 15, 3580-3595.
https://doi.org/10.3390/ijms15033580
D'Auria S., Petrova L., John C., Russev G., Varriale A., Bogoeva V. Mol. Biosyst. 2009, 5, 1331-1336.
https://doi.org/10.1039/b905921k
Tannock I.F., Rotin D. Cancer Res. 1989, 49, 4373-4384.
Huber V., Camisaschi C., Berzi A., Ferro S., Lugini L., Triulzi T., Tuccitto A., Tagliabue E., Castelli C., Rivoltini L. Semin. Cancer Biol. 2017, 43, 74-89.
https://doi.org/10.1016/j.semcancer.2017.03.001
Lee E.S., Kim D., Youn Y.S., Oh K.T., Bae Y.H. Angew. Chem. Int. Ed. 2008, 47, 2418-2421.
https://doi.org/10.1002/anie.200704121
Biscaglia F., Gobbo M. Pept. Sci. 2018, 110, e24038.
https://doi.org/10.1002/pep2.24038
Almeida-Marrero V., Van De Winckel E., Anaya-Plaza E., Torres T., De La Escosura A. Chem. Soc. Rev. 2018, 47, 7369-7400.
https://doi.org/10.1039/C7CS00554G
Lin Y., Zhou T., Bai R., Xie Y. J. Enzyme Inhib. Med. Chem. 2020, 35, 1080-1099.
https://doi.org/10.1080/14756366.2020.1755669
Ranyuk E., Cauchon N., Klarskov K., Guérin B., Van Lier J.E. J. Med. Chem. 2013, 56, 1520-1534.
https://doi.org/10.1021/jm301311c
Bullous A.J., Alonso C.M.A., Boyle R.W. Photochem. Photobiol. Sci. 2011, 10, 721-750.
https://doi.org/10.1039/c0pp00266f
Zhu L., Liu J., Zhou G., Ng H.M., Ang I.L., Ma G., Liu Y., Yang S., Zhang F., Miao K., Poon T.C.W., Zhang X., Yuan Z., Deng C.X., Zhao Q. Chem. Commun. 2019, 55, 14255-14258.
https://doi.org/10.1039/C9CC06839B
Picarda E., Ohaegbulam K.C., Zang X. Clin. Cancer Res. 2016, 22, 3425-3431.
https://doi.org/10.1158/1078-0432.CCR-15-2428
Teunissen A.J.P., Pérez-Medina C., Meijerink A., Mulder W.J.M. Chem. Soc. Rev. 2018, 47, 7027-7044.
https://doi.org/10.1039/C8CS00278A
Zheng G., Chen J., Stefflova K., Jarvi M., Li H., Wilson B.C. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8989-8994.
https://doi.org/10.1073/pnas.0611142104
Overall C.M., Kleifeld O. Nat. Rev. Cancer 2006, 6, 227-239.
https://doi.org/10.1038/nrc1821
Bolze F., Jenni S., Sour A., Heitz V. Chem. Commun. 2017, 53, 12857-12877.
https://doi.org/10.1039/C7CC06133A
Kobayashi H., Ogawa M., Alford R., Choyke P. L., Urano Y. Chem. Rev. 2010, 110, 2620-2640.
https://doi.org/10.1021/cr900263j
Collins H.A., Khurana M., Moriyama E.H., Mariampillai A., Dahlstedt E., Balaz M., Kuimova M.K., Drobizhev M., Yang V.X.D., Phillips D., Rebane A., Wilson B.C., Anderson H.L. Nat. Photonics 2008, 2, 420-424.
https://doi.org/10.1038/nphoton.2008.100
Ke H., Wang H., Wong W.K., Mak N.K., Kwong D.W.J., Wong K.L., Tam H.L. Chem. Commun. 2010, 46, 6678-6680.
https://doi.org/10.1039/c0cc01848a
Poon C.T., Chan P.S., Man C., Jiang F.L., Wong R.N.S., Mak N.K., Kwong D.W.J., Tsao S.W., Wong W.K. J. Inorg. Biochem. 2010, 104, 62-70.
https://doi.org/10.1016/j.jinorgbio.2009.10.004
Ke M., Chen S., Peng X., Zheng Q., Zheng B., Yeh C., Huang J. Eur. J. Med. Chem. 2017, 127, 200-209.
https://doi.org/10.1016/j.ejmech.2016.12.056
Abu-Surrah A., Kettunen M. Curr. Med. Chem. 2006, 13, 1337-1357.
https://doi.org/10.2174/092986706776872970
Brunner H., Schellerer K.M. Monatsh. Chem. 2002, 133, 679-705.
https://doi.org/10.1007/s007060200041
Lottner C., Bart K. C., Bernhardt G., Brunner H. J. Med. Chem. 2002, 45, 2064-2078.
https://doi.org/10.1021/jm0110688
Lottner C., Knuechel R., Bernhardt G., Brunner H. Cancer Lett. 2004, 203, 171-180.
https://doi.org/10.1016/j.canlet.2003.09.001
Bio M., Rajaputra P., Nkepang G., Awuah S.G., Hossion A.M.L., You Y. J. Med. Chem. 2013, 56, 3936-3942.
https://doi.org/10.1021/jm400139w
Rajaputra P., Bio M., Nkepang G., Thapa P., Woo S., You Y. Bioorg. Med. Chem. 2016, 24, 1540-1549.
https://doi.org/10.1016/j.bmc.2016.02.025
Bio M., Rajaputra P., Nkepang G., You Y. J. Med. Chem. 2014, 57, 3401-3409.
https://doi.org/10.1021/jm5000722
Thapa P., Li M., Bio M., Rajaputra P., Nkepang G., Sun Y., Woo S., You Y. J. Med. Chem. 2016, 59, 3204-3214.
https://doi.org/10.1021/acs.jmedchem.5b01971
Zhou X.Q., Meng L.B., Huang Q., Li J., Zheng K., Zhang F.L., Liu J.Y., Xue J.P. ChemMedChem 2015, 10, 304-311.
https://doi.org/10.1002/cmdc.201402401
Tomanová P., Rimpelová S., Jurášek M., Buděšínský M., Vejvodová L., Ruml T., Kmoníčková E., Drašar P. B. Steroids 2015, 97, 8-12.
https://doi.org/10.1016/j.steroids.2014.08.024
Tuncel S., Trivella A., Atilla D., Bennis K., Savoie H., Albrieux F., Delort L., Billard H., Dubois V., Ahsen V., Caldefie-Chézet F., Richard C., Boyle R.W., Ducki S., Dumoulin F. Mol. Pharm. 2013, 10, 3706-3716.
https://doi.org/10.1021/mp400207v
Zhao X., Ma H., Chen J., Zhang F., Jia X., Xue J. Eur. J. Med. Chem. 2019, 182, 111625.
https://doi.org/10.1016/j.ejmech.2019.111625
Otvagin V.F., Kuzmina N.S., Krylova L.V., Volovetsky A.B., Nyuchev A.V., Gavryushin A.E., Meshkov I.N., Gorbunova Y.G., Romanenko Y.V., Koifman O.I., Balalaeva I.V., Fedorov A.Y. J. Med. Chem. 2019, 62, 11182-11193.
https://doi.org/10.1021/acs.jmedchem.9b01294
Maisch T., Eichner A., Späth A., Gollmer A., König B., Regensburger J., Bäumler W. PLOS ONE 2014, 1-18.
https://doi.org/10.1371/journal.pone.0111792
Wainwright M., Maisch T., Nonell S., Plaetzer K., Almeida A., Tegos G.P., Hamblin M.R. Lancet Infect Dis. 2017, 17(2), e49-e55.
https://doi.org/10.1016/S1473-3099(16)30268-7
Yao L., Rong Q., Zaat S.A.J., Breukink E., Heger M. J. Clin. Transl. Res. 2015, 1(3), 140-167.
https://doi.org/10.18053/jctres.201503.002
Hamblin M.R. Curr. Opin. Microbiol. 2016, 33, 67-73.
https://doi.org/10.1016/j.mib.2016.06.008
Huang L., Dai T., Hamblin M.R. Antimicrobial Photodynamic Inactivation and Photodynamic Therapy for Infections. In: Photodynamic Therapy. Methods and Protocols (Gomer C.J., Ed.) New York: Springer, 2010. p. 155-174.
https://doi.org/10.1007/978-1-60761-697-9_12
Kustov A.V., Smirnova N.L., Berezin M.B. Thermochim. Acta 2011, 521, 224-226.
https://doi.org/10.1016/j.tca.2011.02.020
Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. J. Chem. Thermodyn. 2015, 89, 123-126.
https://doi.org/10.1016/j.jct.2015.05.016
Berezin D.B., Karimov D.R., Venediktov E.A., Kustov A.V., Makarov V.V., Romanenko Y.V. Macroheterocycles 2015, 8(4), 384-388.
https://doi.org/10.6060/mhc151088b
Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. J. Chem. Thermodyn. 2015, 83, 104-109.
https://doi.org/10.1016/j.jct.2014.12.013
Kustov A.V., Garas'ko E.V., Belykh D.V., Khudyaeva I.S., Startseva O.M., Makarov V.V., Strel'nikov A.I., Berezin D.B. Usp. Sovrem. Estestvozn. 2016, 12, 263-268. (in Russ.).
https://doi.org/10.17513/use.36297
Kustov A.V., Belykh D.V., Smirnova N.L., Khudyaeva I.S., Berezin D.B. J. Chem. Thermodyn. 2017, 115, 302-306.
https://doi.org/10.1016/j.jct.2017.07.031
Kustov A.V., Antonova O.A., Smirnova N.L., Khudyaeva I.S., Belykh D.V., Berezin D.B. Thermochim. Acta 2018, 669, 169-172.
https://doi.org/10.1016/j.tca.2018.09.022
Kustov A.V., Belykh D.V., Smirnova N.L., Venediktov E.A., Kudayarova T.V., Kruchin S.O., Berezin D.B. Dyes and Pigments 2018, 149, 553-559.
https://doi.org/10.1016/j.dyepig.2017.09.073
Berezin D.B., Kustov A.V., Krestyaninov M.A., Shukhto O.V., Batov D.V., Kukushkina N.V. J. Mol. Liq. 2019, 283, 532-536.
https://doi.org/10.1016/j.molliq.2019.03.091
Kustov A.V., Kustova T.V., Belykh D.V., Khudyaeva I.S., Berezin D.B. Dyes and Pigments 2020, 173, 107948.
https://doi.org/10.1016/j.dyepig.2019.107948
Berezin D.B., Makarov V.V., Znoyko S.A., Mayzlish V.E., Kustov A.V. Mend. Commun. 2020, 30, 621-623.
https://doi.org/10.1016/j.mencom.2020.09.023
Kustov A.V., Belykh D.V., Startseva O.M., Kruchin S.O., Venediktov E.A., Berezin D.B. Pharm. Anal. Acta 2016, 7(5), 480-484.
https://doi.org/10.4172/2153-2435.1000480
Yakavets I., Millard M., Zorin V., Lassalle H.-P., Bezdetnaya L. J. Contr. Release 2019, 304, 268-287.
https://doi.org/10.1016/j.jconrel.2019.05.035
Smith D.A., Van de Waterbeemd H., Walker D.K., Mannhold R., Kubinyi H., Timmerman H. Pharmacokinetics and Metabolism on Drug Design. In: Methods and Principles in Medicinal Chemistry (Mannhold R., Kubinyi H., Timmerman H., Eds.) Weinheim: Wiley-VCH Verlag, 2001. 141 p.
Fromm-Dornieden C., Rembe J.D., Schäfer N., Böhm J., Stuermer E.K. J. Med. Microbiol. 2015, 64(4), 407-414.
https://doi.org/10.1099/jmm.0.000034
Venediktov E.A., Tulikova E.Yu., Rozhkova E.P., Belykh D.V., Khudyaeva I.S., Berezin D.B. Macroheterocycles 2017, 10(3), 295-300.
https://doi.org/10.6060/mhc170404v
Dabrowski J.M. Adv. Inorg. Chem. 2017, 70, 343-394.
https://doi.org/10.1016/bs.adioch.2017.03.002
Schwartzberg L.S., Navari R.M. Adv. Ther. 2018, 35(6), 754-767.
https://doi.org/10.1007/s12325-018-0707-z
Mahmood M.E., Al-Koofee D.A.F. Global J. Sc. Front. Res. Chem. 2013, 13(4), 1-7.
Kustov A.V., Berezin D.B., Koifman O.I. Antimicrobial and Antiviral Photodynamic Therapy: Mechanisms, Targets and Prospects for Clinical Applications. In: Functional Materials Based on Tetrapyrrole Macrocyclic Compounds (Koifman O.I., Ed.) Moscow: Lenand, 2019. p. 532-581. (in Russ.).
Drulis-Kawa Z., Bednarkiewicz A., Bugla G., Stręk W., Doroszkiewicz W. Adv. Clin. Exp. Med. 2006, 15(2), 279-283.
Isakau H.A., Parkhats M.V., Knyukshto V.N., Dzhagarov B.M., Petrov E.P., Petrov P.T. J. Photochem. Photobiol. B: Biol. 2008, 92, 165-174.
https://doi.org/10.1016/j.jphotobiol.2008.06.004
Hamblin M.R., Hasan T. Photochem. Photobiol. Sci. 2004, 3(5), 436-450.
https://doi.org/10.1039/b311900a
Bertoloni G., Rossi F., Valduga G., Jori G., Ali H., van Lier J.E. Microbios 1992, 71(286), 33-46.
Lambrechts S.A.G., Demidova T.N., Aalders M.C.G. Photochem. Photobiol. Sci. 2005, 4, 503.
https://doi.org/10.1039/b502125a
Awad М.М., Tovmasyan A., Craik J.D., Batinic-Haberle I., Benov L.T. Appl. Microbiol. Biotechnol. 2016, 100, 7679-7688.
https://doi.org/10.1007/s00253-016-7632-3
Geynits A.V., Sorokaty A.E., et al. Laser Medicine 2007, 1(3), 45.
Gostishchev V.K. General Surgery. Moscow: GEOTAR-MEDIA, 2016. 736 p.
Briskin B.S., Proshin A.V., Lebedev V.V., Yakobishvili Ya.I. Infections in Surgery 2003, 1(4), 11-1.
Hamblin M.R., Abrahamse H. Antibiotics (Basel) 2020, 9(2), E53.
https://doi.org/10.3390/antibiotics9020053
Hamblin M.R., Dai T. Photodiagnosis Photodyn Ther. 2010, 7(2), 134-136.
https://doi.org/10.1016/j.pdpdt.2010.04.004
Sharma S.K., Dai T., Kharkwal G.B., Huang Y.Y., Huang L., De Arce V.J., Tegos G.P., Hamblin M.R. Curr. Pharm. Des. 2011, 17(13), 1303-1319.
https://doi.org/10.2174/138161211795703735
St Denis T.G., Dai T., Izikson A., Astrakas C., Anderson R.R., Hamblin M.R., Tegos G.P. Virulence 2011, 2(6), 509-520..
https://doi.org/10.4161/viru.2.6.17889
Cacaccio J., Durrani F., Cheruku R.R., Borah B., Ethirajan M., Tabaczynski W., Pera P., Missert J.R., Pandey R.K. Photochem. Photobiol. 2020, 96, 625-635.
https://doi.org/10.1111/php.13183
Jenkins S.V., Srivatsan A., Reynolds K.Y., Gao F., Zhang Y., Heyes C.D., Pandey R.K., Chen J. J. Colloid Interface Sci. 2016, 461, 225-231..
https://doi.org/10.1016/j.jcis.2015.09.037
Srivatsan A., Pera P., Joshi P., Wang Y., Missert J.R., Tracy E.C., Tabaczynski W.A., Yao R., Sajjad M., Baumann H., Pandey R.K. Bioorg. Med. Chem. 2015, 23, 3603-17. PMID 25936263.
https://doi.org/10.1016/j.bmc.2015.04.006
Grandi V., Bacci S., Corsi A., Sessa M., Puliti E., Murciano N., Scavone F., Cappugi P., Pimpinelli N. Photodiagn. Photodyn. Therapy 2018, 21, 252-256.
https://doi.org/10.1016/j.pdpdt.2017.12.012
Akhlyustina E.V. J. Physics: Conf. Series 2019, 1189.
https://doi.org/10.1088/1742-6596/1189/1/012033
Kurochkina A.Yu., Plavsky V.Yu., Yudina N.A. Med. J. 2010, 2, 131-133.
Casas A., Fukuda H., Di Venosa G., Batlle A. Br. J. Cancer 2001, 85(2), 279-284.
https://doi.org/10.1054/bjoc.2001.1875
Zeina B., Greenman J., Corry D., Purcell W.M. Br. J. Dermatol. 2002, 146, 568-573.
https://doi.org/10.1046/j.1365-2133.2002.04623.x
Stranadko E.F., Kuleshov I.Yu., Karakhan G.I. Laser Medicine 2010, 14(2), 52-56.
Shin F.E., Tolstykh P.I., Stranadko E.F., Solovieva A.B., Ivanov A.V., Eliseenko V.I., Mamantov P.G., Shin E.F., Kuleshov I.Yu. Laser Medicine 2009, 3-4, 55-60.
Malik Z., Ladan H., Nitzan Y., Smetana Z. Antimicrobal and Antiviral Activity of Porphyrin Photosensitation. In: Photodynamic Therapy of Cancer (Jori G., Moan J., Star W., Eds.) Proc. SPIE 2078, 1994. p. 305-312.
https://doi.org/10.1117/12.168668
Pаolo L.R., Segalla A., Bertoloni G., et al. J. Photochem. Photobiol. 2000, 59(1-3), 152-158.
https://doi.org/10.1016/S1011-1344(01)00114-2
Kato I.T., Prates R.A., Sabino C.P., Fuchs B.B., Tegos G.P., Mylonakis E., Hamblin M.R., Ribeiro M.S., Antimicrob. Agents Chemother. 2013, 57(1), 445-451.
https://doi.org/10.1128/AAC.01451-12
Jori G., Brown S.B. Photochem. Photobiol. Sci. 2004, 3, 403-405.
https://doi.org/10.1039/b311904c
Dai T., Fuchs B.B., Coleman J.J., Prates R.A., Astrakas C., St. Denis T., Ribeiro M.S., Mylonakis E., Hamblin M.R., Tegos G.P. Front. Microbiol. 2012, 120..
https://doi.org/10.3389/fmicb.2012.00120
Jori J. J. Environ. Path. Toxcol. Oncol. 2006, 25, 505-519.
https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.320
Vera D.M., Haynes M.H., Ball A.R., Dai D.T., Astrakas C., Kelso M.J., Hamblin M.R., Tegos G.P. Photochem. Photobiol. 2012, 88(3), 499-511.
https://doi.org/10.1111/j.1751-1097.2012.01087.x
Wilson B.C. In: Handbook of Photonics for Biomedical Science (Tuchin V.V., Ed.). London: CRC Press, Taylor & Francis Group, 2010. p. 649-686.
Harris F., Pierpoint L. Med. Res. Rev. 2012, 32(6), 1292-327.
https://doi.org/10.1002/med.20251
Li X., Guo H., Tian Q., Zheng G., Hu Y., Fu Y., Tan H. J. Surg. Res. 2013, 184(2), 1013-21.
https://doi.org/10.1016/j.jss.2013.03.094
Wozniak A., Grinholc M. Front Microbiol. 2018, 9, 930.
https://doi.org/10.3389/fmicb.2018.00930
Grinholc M., Nakonieczna J., Fila G., Taraszkiewicz A., Kawiak A., Szewczyk G., Sarna T., Lilge L., Bielawsk K.P. Appl. Microbiol. Biotechnol. 2015, 99(9), 4031-4043.
https://doi.org/10.1007/s00253-015-6539-8
Hamblin M.R. Photochem. Photobiol. 2012, 88(3), 496-8.
https://doi.org/10.1111/j.1751-1097.2012.01139.x
Thota S., Wang M., Jeon S., Maragani S., Hamblin M.R., Chiang L.Y. Molecules 2012, 17(5), 5225-43.
https://doi.org/10.3390/molecules17055225
Malik Z., Hanania J., Nitzan Y. J. Photochem. Photobiol. B 1990, 5, 281-293.
https://doi.org/10.1016/1011-1344(90)85044-W
Stranadko E.F., Koraboev U.M., Tolstykh M.P. Surgery 2000, 9, 67-70.
Lu Z.R., Ye F., Vaidya A. J. Control. Release 2007, 122, 269-277.
https://doi.org/10.1016/j.jconrel.2007.06.016
Knop K., Mingotaud A.-F., El-Akra N., Violleau F., Souchard J.-P. Photochem. Photobiol. Sci. 2009, 8, 396-404.
https://doi.org/10.1039/b811248g
Nitzan Y., Gutterman M., Malik Z., Ehrenberg B. Photochem. Photobiol. 1992, 55(1), 89-96.
https://doi.org/10.1111/j.1751-1097.1992.tb04213.x
Strakhovskaya M.G., Belenikina N.S., Nikitina V.V., Kovalenko S.Yu., Kovalenko I.B., Averyanov A.V., Rubin A.B., Galochkina T.V. Clinical Practice 2013, 4(1), 25-30.
https://doi.org/10.17816/clinpract4125-30
Loke W.K., Lau S.K., Yong L.L., Khor E. Sum C.K. J. Biomed. Mater. Res. 2000, 53(1), 8.
https://doi.org/10.1002/(SICI)1097-4636(2000)53:1<8::AID-JBM2>3.0.CO;2-3
Muzzarelli R.A.A., Morganti P., Morganti G., Palombo P., Palombo M., Biagini G., Belmonte M.M., Giantomassi F., Orlandi F., Muzzarelli C. Carbohydrate Polymers 2007, 70(3), 27434.
https://doi.org/10.1016/j.carbpol.2007.04.008
Aoyagi S., Onishi H., Machida Y. Int. J. Pharm. 2007, 330(1-2), 138-45.
https://doi.org/10.1016/j.ijpharm.2006.09.016
Solak E.K., Kaya S. J. Gazi University Health Sciences 2020, 2(1), 11-17.
Zhientaev T.M., Melik-Nubarov N.S., Litmanovich E.A., Aksenova N.A., Glagolev N.N., Solovieva A.B. Polymer Science, Ser. A 2009, 5, 757-767.
Solovieva А.B., Melik-Nubarov N.S., Zhiyentayev Т.М., Tolstih P.I., Kuleshov I.I., Aksenova N.A., Litmanovich E.A., Glagolev N.N., Timofeeva V.А., Ivanov A.V. Laser Physics 2009, 19(4), 1-8.
https://doi.org/10.1134/S1054660X09040410
Solovieva A.B., Glagolev N.N., Ivanov A.V., Konoplyannikov A.G., Melik-Nubarov N.S., Rogovina S.Z., Zhientaev T.M. An Agent for the Treatment of Malignant tumors by the Method of Photodynamic Therapy, 2008, RF patent No 2314806.
Gorokh Yu.A., Aksenova N.A., Solovieva A.B., Olshevskaya V.A., Zaitsev A.V., Lagutina M.A., Luzgina V.N., Mironov A.F., Kalinin V.N. Russ. J. Phys. Chem., A 2011, 85, 871-875.
https://doi.org/10.1134/S003602441105013X
Solovieva A.B., Tolstykh P.I., Ivanov A.V., Glagolev N.N., Shinn F.E., Kuleshov I.Yu. A Method of Treating Extensive Purulent Wounds of Soft Tissues, 2010, RF patent No 2396994.
Huang L., Xuan Y., Koide Y., Zhiyentayev T., Tanaka M., Hamblin M.R. Lasers Surg. Med. 2012, 44(6), 490-9.
https://doi.org/10.1002/lsm.22045
Wagner J.R., Ali H., Langlois R., Brasseur N., van Lier J.E. Photochem. Photobiol. 1987, 45(5), 587-594.
https://doi.org/10.1111/j.1751-1097.1987.tb07384.x
Aksenova N.A., Oles T., Sarna T., Glagolev N.N., Chernjak A.V., Volkov V.I., Kotova S.L., Melik-Nubarov N.S., Solovieva A.B. Laser Physics 2012, 22(10), 1642-1649.
https://doi.org/10.1134/S1054660X12100015
Solovieva A.B., Tolstih P.I., Melik-Nubarov N.S., Zhientaev T.M., Kuleshov I.G., Glagolev N.N., Ivanov A.V., Karahanov G.I., Tolstih M.P., Timashev P.S. Laser Phyics 2010, 5, 1068-1074.
https://doi.org/10.1134/S1054660X10090203
Aksenova N.A., Zhientaev T.M., Brilkina A.A., Dubasova L.V., Ivanov A.V., Timashev P.S., Melik-Nubarov N.S., Solovieva A.B. Photonics & Lasers in Medicine 2013, 2(3), 189-198.
https://doi.org/10.1515/plm-2013-0011
Zhiyentayev T.M., Boltaev U.T., Solov'eva A.B., Aksenova N.A., Glagolev N.N., Chernjak A.V., Melik-Nubarov N.S. Photochem. Photobiol. 2014, 90, 171-182.
https://doi.org/10.1111/php.12181
Tsvetkov V.B., Solov'eva A.B., Melik-Nubarov N.S. Phys. Chem. Chem. Phys. 2014, 16, 10903-10913.
https://doi.org/10.1039/C3CP55510K
Rudenko T.G., Shekhter A.B., Guller A.E., Aksenova N.A., Glagolev N.N., Ivanov A.V., Aboyants R.K., Kotova S.L., Solovieva A.B. Photochem. Photobiol. 2014, 90, 1413-1422.
https://doi.org/10.1111/php.12340
Solovieva A.B., Kardumian V.V., Aksenova N.A., Belovolova L.V., Glushkov M.V., Bezrukov E.A., Sukhanov R.B., Kotova S.L., Timashev P.S. Sci. Rep. 2018, 8, 8042.
https://doi.org/10.1038/s41598-018-26458-6
Fontana C.R., dos Santos D.S. Jr., Bosco J.M., Spolidorio D.M., Marcantonio R.A. Drug Deliv. 2008, 15(7), 417-422.
https://doi.org/10.1080/10717540802007433
Aksenova N.A., Timofeeva V.A., Rogovina S.Z., Timashev P.S., Glagolev N.N., Solovieva A.B. Polymer Science, Series B 2010, 52(2), 122-128.
https://doi.org/10.1134/S1560090410010100
Glagolev N.N., Rogovina S.Z., Solov'eva A.B., Aksenova N.A., Kotova S.L. Russ. J. Phys. Chem. 2006, 80, Suppl. 1., S72-S76.
https://doi.org/10.1134/S0036024406130127
Kardumyan V.V., Aksenova N.A., Chernyak A.A., Glagolev N.N., Volkov V.I., Solovieva A.B. Laser Phys. 2015, 25(4), 6002.
https://doi.org/10.1088/1054-660X/25/4/046002
Solovieva A.B., Spokoiny A.L., Rudenko T.G., Shekhter A.B., Glagolev N.N., Aksenova N.A. Clinical Practice 2016, 2, 45-49.
https://doi.org/10.17816/clinpract7245-49
Tolstykh P.I., Shin F.E., Tamrazova O.B., Derbenev V.A., Kuleshov I.Yu., Solovieva A.B., Vasyagin S.N. Military Medical J. 2010, 8, 41.
Rushai A.K., Makarenko A.V., Bodachenko K.A., Kolosova T.A. Clinical Medicine 2013, 14(4), 101-104.
Drexler H. Cardiovasc Res. 1999, 43, 572-579.
https://doi.org/10.1016/S0008-6363(99)00152-2
Shumaev K.B., Gubkin A.A., Gubkina S.A., Gudkov L.L., Sviryaeva I.V., Timoshin A.A., Topunov A.F., Vanin A.F., Ruuge E.T.O. Biophysics 2006, 51(3), 472-477.
https://doi.org/10.1134/S0006350906030134
Santos C.X.C., Anilkumar N., Zhang M., Brewer A.C., Shah A.M. Free Radical Biology & Medicine 2011, 50(7), 777-793.
https://doi.org/10.1016/j.freeradbiomed.2011.01.003
Murray J., Taylor S.W., Zhang В., Ghosh S.S., Capaldi R.A. J. Biol. Chem. 2003, 278(39), 37223-37230.
https://doi.org/10.1074/jbc.M305694200
Vanin A.F. Biochemistry 1998, 63, 924-938.
Mironov A.F. Photodynamic Therapy for Cancer. In: Advances in the Chemistry of Porphyrins. Vol. 1. (Golubchikov O.A., Ed.) SPb.: St-PbGU, 1997. p. 357-374
Solovieva A.B., Vanin A.F., Shekhter A.B., Glagolev N.N., Aksenova N.A., Mikoyan V.D., Kotova S.L., Rudenko T.G., Fayzullin A.L., Timashev P.S. Nitric Oxide 2019, 83, 24-32.
https://doi.org/10.1016/j.niox.2018.12.004
Davies A.G. Tin Organometallics. In: Comprehensive Organometallic Chemistry. Vol. 3. London: Elsevier, 2007. p. 809-883.
https://doi.org/10.1016/B0-08-045047-4/00054-6
Desai A., Mitchison T.J. Ann. Rev. Cell. Dev. Biol. 1997, 13, 83-117.
https://doi.org/10.1146/annurev.cellbio.13.1.83
Milaeva E.R., Shpakovsky D.B., Gracheva Y.A., Antonenko T.A., Osolodkin D.I., Palyulin V.A., Shevtsov P.N., Neganova M.E., Vinogradova D.V., Shevtsova E.F. J. Organomet. Chem. 2015, 782, 96-102.
https://doi.org/10.1016/j.jorganchem.2014.12.013
Milaeva E., Petrosyan V., Berberova N., Pimenov Y., Pellerito L. Bioinorg. Chem. Appl. 2004, 18, 69-91.
https://doi.org/10.1155/S1565363304000068
Benedetti M, Giuliani M.E., Regoli F. Ann. NY Acad. Sci. 2015, 1340, 8-19.
https://doi.org/10.1111/nyas.12698
Aschner M., Aschner J.L. Neurosc. Biobehav. Rev. 1992, 16, 427-435.
https://doi.org/10.1016/S0149-7634(05)80184-8
Milaeva E.R., Tyurin V.Yu., Gracheva Yu.A., Dodochova M.A., Pustovalova L.M., Chernyshev V.N. Bioinorg. Chem. Appl. 2006, Article ID 64927, 1-5.
https://doi.org/10.1155/BCA/2006/64927
Tyurin V.Yu., Zhang J., Glukhova A.P., Milaeva E.R. Macroheterocycles 2011, 4, 211-212.
https://doi.org/10.6060/mhc2011.3.10
Milaeva E.R., Tyurin V.Yu., Shpakovsky D.B., Gerasimova O.A., Zhang J., Gracheva Yu.A. Heteroatom Chem. 2006, 17, 475-480.
https://doi.org/10.1002/hc.20269
Forman H.J., Zhang H., Rinna A. Mol. Aspects Med. 2009, 30, 1-12.
https://doi.org/10.1016/j.mam.2008.08.006
Cappellini M.D., Fiorelli G. Lancet 2008, 371, 9606, 64-74.
https://doi.org/10.1016/S0140-6736(08)60073-2
Levy H.R., Christoff M. Biochem J. 1983, 214, 959-965.
https://doi.org/10.1042/bj2140959
Milgrom L.R., Jones C.C., Harriman A. J. Chem. Soc. Perkin Trans. 1988, 2, 71-79.
https://doi.org/10.1039/p29880000071
Gerbec E.N., Messing R.D., Starber S.B. Brain Res. Bull. 1988, 346-351.
https://doi.org/10.1016/0006-8993(88)90379-4
Steckelbroeck S., Stoffel-Wagner B., Reichelt R., Schramm J., Bidlingmaier F., Siekmann L., Klingmuller D. J. Neuroendocrinol. 1999, 11, 457-464.
https://doi.org/10.1046/j.1365-2826.1999.00363.x
Pashkov A.N., Popov S.S., Semenikhina A.V., Rakhmanova T.I. Bull. Experim. Biol. Med. 2005, 139, 520-524.
https://doi.org/10.1007/s10517-005-0346-7
Sedlak J., Lindsey R.H. Anal. Biochem. 1968, 2, 192-205.
https://doi.org/10.1016/0003-2697(68)90092-4
Geloso M.C., Corvino V., Cavallo V., Toesca A., Guadagni E., Passalacqua R., Michetti F. Neurosci. Lett. 2004, 357, 103-107.
https://doi.org/10.1016/j.neulet.2003.11.076
Kook S.C., Wong K., Ng Meng, Kumar Das V.G. Appl. Organomet. Chem. 1991, 5, 409-415.
https://doi.org/10.1002/aoc.590050507
Bosch B.J., van der Zee R., de Haan C.A.M., Rottier P.J.M. J. Virol. 2003, 77, 8801-8811.
https://doi.org/10.1128/JVI.77.16.8801-8811.2003
Lu R., Zhao X., Li J. et al. The Lancet 2020, 395, 565-574.
https://doi.org/10.1016/S0140-6736(20)30251-8
Hoffmann M., Kleine-Weber H., Schroeder S., et al. Cell 2020, 2, 271-280.
https://doi.org/10.1016/j.cell.2020.02.052
Xu X., Chen P., Wang J., Feng J., et al. Science China Life Sciences 2020, 63, 457-460.
https://doi.org/10.1007/s11427-020-1637-5
Wan Y., Shang J., Graham R., et al. J. Virol. 2020, 94, e00127-20.
https://doi.org/10.1128/JVI.00127-20
Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Intensive Care Medicine 2020, 46, 586-590.
https://doi.org/10.1007/s00134-020-05985-9
Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Science 2020, 361(6485), 1444-1448.
https://doi.org/10.1126/science.abb2762
Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Am. J. Respir. Critical Care Med. 2020, 202, 756-759.
https://doi.org/10.1164/rccm.202001-0179LE
Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. Antiviral Res. 2020, 176(104742), 1-5.
https://doi.org/10.1016/j.antiviral.2020.104742
Matsuyama S., Nao N, Shirato K., et al. Proc. Nat. Acad. Sci. USA 2020, 117(13), 7001-7003.
https://doi.org/10.1073/pnas.2002589117
Kawase M., Shirato K., van der Hoek L., Taguchi F., Matsuyama S. J. Virol. 2012, 86(12), 6537-6545.
https://doi.org/10.1128/JVI.00094-12
Zhou Y., Vedantham P., Lu K., et al. Antiviral Res. 2015, 116, 76-84.
https://doi.org/10.1016/j.antiviral.2015.01.011
Kuba K., Imai Y., Rao S., et al. Nat. Med. 2005, 11, 875-879.
https://doi.org/10.1038/nm1267
Monteil V., Kwon H., Prado P., et al. Cell 2020, 181(4), 905-913.
https://doi.org/10.1016/j.cell.2020.04.004
Gheblawi M., Wang K., Viveiros A., et al. Circ. Res. 2020, 126, 1456-1474.
https://doi.org/10.1161/CIRCRESAHA.120.317015
Jiang S., Hillyer C., Du L. Trends in Immunology 2020, 5, 355-359.
https://doi.org/10.1016/j.it.2020.03.007
Wang C., Li W., Drabek D. et al. Nat. Commun. 2020, 11, 2251.
https://doi.org/10.1038/s41467-020-16256-y
Widjaja I., Wang C., Haperen R., et al. Emerg. Microbes Infect. 2019, 8, 516-530.
https://doi.org/10.1080/22221751.2019.1597644
Hwang W.C., Lin Y., Santelli E., et al. J. Biol. Chem. 2006, 281, 34610-34616.
https://doi.org/10.1074/jbc.M603275200
Pedersen S.F., Ho Y.-C. J. Clin. Invest. 2020, 130(5), 2202-2205.
https://doi.org/10.1172/JCI137647
Woo Y.L., Kamarulzaman A., Augustin Y., Staines H., Altice F. J. Petrol. 2020. DOI: 10.31219/osf.io/mxsvw.
https://doi.org/10.31219/osf.io/mxsvw
Bussalino E., Maria A. De, Russo R., et al. Am. J. Transplant. 2020, 7, 1922-1924.
https://doi.org/10.1111/ajt.15920
Sarzi-Puttini P., Giorgi V., Sirotti S., Marotto D., et al. Clinical and Experimental Rheumatology 2020, 38(2), 337-342.
Wu C., Liu Y., Yang Y., et al. Acta Pharm. Sin. B 2020, 10(5), 766-788.
https://doi.org/10.1016/j.apsb.2020.02.008
Smith M., Smith J. ChemRxiv 2020. DOI: 10.26434/chemrxiv.11871402.
https://doi.org/10.26434/chemrxiv.11871402
Lebedeva N., Popova T., Kozbial M., et al. J. Porphyrins Phthalocyanines 2011, 15(4), 223-229.
https://doi.org/10.1142/S1088424611003185
Lebedeva N.S., Gubarev Y.A., Koifman O.I. Mendeleev Commun. 2015, 25, 307-309.
https://doi.org/10.1016/j.mencom.2015.07.027
Lebedeva N., Malkova E., Vyugin A. Koifman O., Gubarev Y. Biochip J. 2016, 10, 1-8.
https://doi.org/10.1007/s13206-016-0101-3
Walls A.C., Park Y.J., Tortorici M.A., et al. Cell 2020, 181(2), 281-292.
https://doi.org/10.1016/j.cell.2020.02.058
Frisch M.J., Trucks G.W., Schlegel H.B., et al. Gaussian Inc., Wallingford 2013, 121, 150-166.
Trott O., Olson A.J. J. Comput. Chem. 2010, 31(2), 455-461.
https://doi.org/10.1002/jcc.21334
Syrbu S.A., Semeikin A.S., Berezin B.D., Koifman O.I. Khimiya Geterociklicheskih Soedineniy 1989, 10, 1373-1377.
Koifman O.I., Ponomarev G.V., Syrbu S.A., Zharov E.V., Sergeeva T.V., Lukovkin A.V., 2014, Patent RF No 2535097.
Kruper W.J., Chamberlin Jr.T.A., Kochanny M. J. Org. Chem. 1989, 11, 2753-2756.
https://doi.org/10.1021/jo00272a057
Sharma K.K., Mandloi M., Rai N., Jain R. RSC Adv. 2016, 6, 96762-96767.
https://doi.org/10.1039/C6RA23364C
van den Tempel N., Horsman M.R., Kanaar R. International Journal of Hyperthermia 2016, 32, 446-454.
https://doi.org/10.3109/02656736.2016.1157216
Mallory M., Gogineni E., Jones G.C., Greer L., Simone II C.B. Crit. Rev. Oncol. Hematol. 2016, 97, 56-64.
https://doi.org/10.1016/j.critrevonc.2015.08.003
Kumar V., Marin-Navarro J., Shukla P. World J. Microbiol. Biotechnol. 2016, 32, 34.
https://doi.org/10.1007/s11274-015-2005-0
Issels R.D., Lindner L.H., Verweij J., Wessalowski R., Reichardt P., Wust P., Ghadjar P., Hohenberger P., Angele M., Salat C. JAMA Oncology 2018, 4, 483-492.
https://doi.org/10.1001/jamaoncol.2017.4996
Cihoric N., Tsikkinis A., van Rhoon G., Crezee H., Aebersold D.M., Bodis S., Beck M., Nadobny J., Budach V., Wust P. International Journal of Hyperthermia 2015, 31, 609-614.
https://doi.org/10.3109/02656736.2015.1040471
Matsumura M., Signor G., Matthews B.W. Nature 1989, 342, 291.
https://doi.org/10.1038/342291a0
Zhang S., Zhang K., Chen X., Chu X., Sun F., Dong Z. Biochem. Biophys. Res. Commun. 2010, 395, 200-206.
https://doi.org/10.1016/j.bbrc.2010.03.159
Joo J.C., Pack S.P., Kim Y.H., Yoo Y.J. J. Biotechnol. 2011, 151, 56-65.
https://doi.org/10.1016/j.jbiotec.2010.10.002
Ahern T.J., Casal J.I., Petsko G.A., Klibanov A.M. Proc. Nat. Acad. Sci. 1987, 84, 675-679.
https://doi.org/10.1073/pnas.84.3.675
Buß O., Rudat J., Ochsenreither K. Comput. Struct. Biotech. J. 2018, 16, 25-33.
https://doi.org/10.1016/j.csbj.2018.01.002
Glick B.R., Pasternak J.J., Patten C.L. Molecular Biotechnology: Principles and Applications of Recombinant DNA, 4th ed, Washington, DS:ASM PRESS, 2010. 1000 p.
Wlodarczyk S.R., Custódio D., Pessoa Jr.A., Monteiro G. Eur. J. Pharm. Biopharm. 2018, 131, 92-98.
https://doi.org/10.1016/j.ejpb.2018.07.019
Fields P.A. Comp. Biochem. Physiol. Part A: Molecular & Integrative Physiology 2001, 129, 417-431.
https://doi.org/10.1016/S1095-6433(00)00359-7
Vieille C., Zeikus G.J. Microbiol. Mol. Biol. Rev. 2001, 65, 1-43.
https://doi.org/10.1128/MMBR.65.1.1-43.2001
Bonch-Osmolovskaya E., Miroshnichenko M., Kostrikina N., Chernych N., Zavarzin G. Arch Microbiol. 1990, 154, 556-559.
https://doi.org/10.1007/BF00248836
Haney P.J., Badger J.H., Buldak G.L., Reich C.I., Woese C.R., Olsen G.J. Proc. Nat. Acad. Sci. 1999, 96, 3578-3583.
https://doi.org/10.1073/pnas.96.7.3578
Chakravarty S., Varadarajan R. FEBS Lett. 2000, 470, 65-69.
https://doi.org/10.1016/S0014-5793(00)01267-9
Empadinhas N., da Costa M.S. Int. Microbiol. 2006, 9(3), 199-206.
Kaur P., Ghai N., Sangha M.K. African J. Biotech. 2009, 8, 619-625.
Bursy J., Kuhlmann A.U., Pittelkow M., Hartmann H., Jebbar M., Pierik A.J., Bremer E. Appl. Environ. Microbiol. 2008, 74, 7286-7296.
https://doi.org/10.1128/AEM.00768-08
Fischer D., Geyer A., Loos E. The FEBS J. 2006, 273, 137-149.
https://doi.org/10.1111/j.1742-4658.2005.05050.x
Faria T.Q., Mingote A., Siopa F., Ventura R., Maycock C., Santos H. Carbohydr. Res. 2008, 343, 3025-3033.
https://doi.org/10.1016/j.carres.2008.08.030
Grigoryan K., Markarian S., Aznauryan M. Problems of Cryobiology and Cryomedicine 2009, 19, 3-10.
Timasheff S.N. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 67-97.
https://doi.org/10.1146/annurev.bb.22.060193.000435
Timasheff S.N. Biochemistry 2002, 41, 13473-13482.
https://doi.org/10.1021/bi020316e
Liu Y., Bolen D. Biochemistry 1995, 34, 12884-12891.
https://doi.org/10.1021/bi00039a051
Michels J.J., Fiammengo R., Timmerman P., Huskens J., Reinhoudt D.N. J. Inclusion Phenom. Macrocycl. Chem. 2001, 41, 163-172.
https://doi.org/10.1023/A:1014488423489
Raffaini G., Ganazzoli F. J. Inclusion Phenom. Macrocycl. Chem. 2013, 76, 213-221.
https://doi.org/10.1007/s10847-012-0193-x
Arakawa T., Bhat R., Timasheff S.N. Biochemistry 1990, 29, 1914-1923.
https://doi.org/10.1021/bi00459a036
Barone G., Capasso S., Del Vecchio P., De Sena C., Fessas D., Giancola C., Graziano G., Tramonti P. J. Therm. Anal. Calorim. 1995, 45, 1255-1264.
https://doi.org/10.1007/BF02547420
Barone G., Giancola C., Verdoliva A. Thermochim. Acta 1992, 199, 197-205.
https://doi.org/10.1016/0040-6031(92)80263-V
Farruggia B., Rodriguez F., Rigatuso R. J. Protein Chem. 2001, 20, 81-89.
https://doi.org/10.1023/A:1011000317042
Lebedeva N., Malkova E., Gubarev Y., V'yugin A., Borisov A. Int. J. Org. Chem. 2013, 3, 225-228.
https://doi.org/10.4236/ijoc.2013.34031
Wang S.-L., Lin S.-Y., Li M.-J., Wei Y.-S., Hsieh T.-F. Biophys Chem. 2005, 114, 205-212.
https://doi.org/10.1016/j.bpc.2004.12.004
Itoh T., Wada Y., Nakanishi T. Agric. Biol. Chem. 1976, 40, 1083-1086.
https://doi.org/10.1080/00021369.1976.10862172
Baier S.K., McClements D.J. J. Agric. Food Chem. 2003, 51, 8107-8112.
https://doi.org/10.1021/jf034249m
Yamasaki M., Yano H., Aoki K. Int. J. Biol. Macromol. 1991, 13, 322-328.
https://doi.org/10.1016/0141-8130(91)90012-J
Baier S.K., McClements D.J. Food Res Int. 2003, 36, 1081-1087.
https://doi.org/10.1016/j.foodres.2003.09.003
Michnik A. J. Therm. Anal. Calorim. 2003, 71, 509-519.
https://doi.org/10.1023/A:1022851809481
Tankovskaia S.A., Abrosimova K.V., Paston S.V. J. Mol. Struct. 2018, 1171, 243-252.
https://doi.org/10.1016/j.molstruc.2018.05.100
Michnik A., Drzazga Z. J. Therm. Anal. Calorim. 2007, 88, 449-454.
https://doi.org/10.1007/s10973-006-8072-6
Das A., Basak P., Pattanayak R., Kar T., Majumder R., Pal D., Bhattacharya A., Bhattacharyya M., Banik S. P. Int. J. Biol. Macromol. 2017, 105, 645-655.
https://doi.org/10.1016/j.ijbiomac.2017.07.074
Samanta N., Mahanta D.D., Hazra S., Kumar G.S., Mitra R.K. Biochimie 2014, 104, 81-89.
https://doi.org/10.1016/j.biochi.2014.05.009
Baier S., McClements D.J. J. Agric. Food Chem. 2001, 49, 2600-2608.
https://doi.org/10.1021/jf001096j
Platts L., Falconer R.J. Int. J. Pharm. 2015, 486, 131-135.
https://doi.org/10.1016/j.ijpharm.2015.03.051
Shil S., Das N., Sengupta B. Sen P. ACS Omega 2018, 3, 16633-16642.
https://doi.org/10.1021/acsomega.8b01832
Dasgupta M., Kishore N. PloS one 2017, 12, e0172208.
https://doi.org/10.1371/journal.pone.0172208
Lebedeva N.S., Gubarev Y.A., Lyubimtsev A.V., Yurina E.S., Koifman O.I. Macroheterocycles 2017, 10, 37-42.
https://doi.org/10.6060/mhc160530g
Lebedeva N.S., Gubarev Y.A., Yurina E.S., Syrbu S.A. J. Mol. Liq. 2018, 265, 664-667.
https://doi.org/10.1016/j.molliq.2018.06.030
Lebedeva N.S., Malkova E., Popova T., Kutyrev A., Syrbu S., Parfenyuk E., Vyugin A. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 118, 395-398.
https://doi.org/10.1016/j.saa.2013.06.101
Lebedeva N.S., Yurina E.S., Guseinov S.S., Gubarev Y.A, Syrbu S.A. Dyes Pigments 2019, 162, 266-271.