Макрогетероциклические соединения – ключевое звено в создании новых функциональных материалов и молекулярных устройств

  • О. И. Койфман
  • Т. А. Агеева
  • И. П. Белецкая
  • и другие
Ключевые слова: Тетрапиррольные соединения, порфирины, фталоцианины, металлокомплексы, хлорины, кобаламины, синтез, применение, катализ, фотосенсибилизаторы, фотовольтаика, оптические свойства, магнитные свойства, сенсорные свойства, взаимодействие с белками

Аннотация

В обзоре рассмотрены последние достижения в области направленного синтеза и применения макрогетероциклических соединений в науке, технике и технологии, а именно: в качестве катализаторов различных процессов, в фото- и электрокатализе, оптических хемосенсоров для катионов металлов, селективных рецепторов органических соединений, индукторов и селекторов, в нелинейной оптике, органической электронике, в качестве магнитов, фотосенсибилизаторов для фотодинамической терапии (ФДТ) ряда онкозаболеваний и для антимикробной ФДТ и т.д.

Для цитирования: 
Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T. , Ch. von Borczyskowski, Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocyclic Compounds – a Key Building Block in New Functional Materials and Molecular Devices Macroheterocycles 202013, 311-467, DOI: 10.6060/mhc200814k

Литература

Milgrom L.R. The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford: University Press, 1997. 256 p.

Battersby A.R. Nat. Prod. Rep. 2000, 17, 507-526.

https://doi.org/10.1039/b002635m

Tetrapyrroles: Birth, Life and Death (Warren M.J., Smith A.G., Ed.) N.Y.: Springer Science & Business Media, 2009. 406 p.

Serebrennikova O.V. Geochemistry of Porphyrins: Conditions of Accumulation and Direction of Metalloporphyrin Transformation in Sendimentary Rocks. In: Advances in Porphyrin Chemistry. Vol. 3. (Golubchikov O.A., Ed.) SPb.: St-PbGU, 2001. p. 326-349.

Keely B.J. Geochemistry of Chlorophylls. In: Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration. Vol. 25. (Grimm B., Porra R.J., Rüdiger W., Scheer H., Ed.) Netherlands: Springer, 2006. р. 535-561.

https://doi.org/10.1007/1-4020-4516-6_37

Bandaranayake W.M. Nat. Prod. Rep. 2006, 23, 223-255.

https://doi.org/10.1039/b307612c

Kepp K.P. Coord. Chem. Rev. 2017, 344, 363-374.

https://doi.org/10.1016/j.ccr.2016.08.008

Collman J.P., Boulatov R., Sunderland C.J, Fu L. Chem. Rev. 2004, 104, 561-588.

https://doi.org/10.1021/cr0206059

Anderson J.L.R., Chapman S.K. Dalton Trans. 2005, 13-24.

https://doi.org/10.1039/b413046d

Bertini I., Cavallaro G., Rosato A. Chem. Rev. 2006, 106, 90-115.

https://doi.org/10.1021/cr050241v

Dereven'kov I.A., Salnikov D.S., Silaghi-Dumitrescu R., Makarov S.V., Koifman O.I. Coord. Chem. Rev. 2016, 309, 68-83.

https://doi.org/10.1016/j.ccr.2015.11.001

Saga Y., Yamashita M., Imanishi M., Kimura Y., Masaoka Y., Hidaka T., Nagasawa Y. ACS Omega 2020, 5, 6817−6825.

https://doi.org/10.1021/acsomega.0c00152

Lindsey J.S. Chem. Rev. 2015, 115, 6534-6620.

https://doi.org/10.1021/acs.chemrev.5b00065

Malyasova A.S., Khelevina O.G., Koifman O.I. Ross. Khim. Zh. 2017, 61, 3-10.

Krasnovsky Jr. А.А. Ross. Khim. Zh. 2017, 61, 17-41.

Scheer H. An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. In: Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration. Vol. 25. (Grimm B., Porra R.J., Rüdiger W., Scheer H., Eds.) Netherlands: Springer, 2006. p. 1-26.

https://doi.org/10.1007/1-4020-4516-6_1

Gunderson V.L., Wasielewski M.R. Supramolecular Chlorophyll Assemblies for Artificial Photosynthesis. In: Handbook of Porphyrin Science. Vol. 20. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co. Pte. Ltd.: Singapore, 2012. p. 45-105.

https://doi.org/10.1142/9789814335508_0022

Borbas K.E. Chlorins. In: Handbook of Porphyrin Science. Vol. 36. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016. p. 1-149.

Storz J.F. Physiology 2016, 31, 223-232.

https://doi.org/10.1152/physiol.00060.2015

Yonetani T., Kanaori K. Biochim. Biophys. Acta 2013, 1834, 1873-1884.

https://doi.org/10.1016/j.bbapap.2013.04.026

Wilks A. Antioxidants & Redox Signaling 2002, 4, 603-614.

https://doi.org/10.1089/15230860260220102

Rovira C., Kunc K., Hutter J., Parrinello M. Inorg. Chem. 2001, 40, 11-17.

https://doi.org/10.1021/ic000143m

Jones A.R. Photochem. Photobiol. Sci. 2017, 16, 820-834.

https://doi.org/10.1039/C7PP00054E

Shell T.A., Lawrence D.S. Acc. Chem. Res. 2015, 48, 11, 2866-2874. https://doi.org/10.1021/acs.accounts.5b00331

Proinsias K., Giedyk M., Gryko D. Chem. Soc. Rev. 2013, 42, 6605-6619.

https://doi.org/10.1039/c3cs60062a

Ishihara S., Labuta J., Van Rossom W., Ishikawa D., Minami K., Hill J.P., Ariga K. Phys. Chem. Chem. Phys. 2014, 16, 9713-9746.

https://doi.org/10.1039/c3cp55431g

Mirkovic T., Ostroumov E.E., Anna J.M., van Grondelle R., Govindjee, Scholes G.D. Chem. Rev. 2017, 117, 249-293.

https://doi.org/10.1021/acs.chemrev.6b00002

Aratani N., Kim D., Osuka A. Acc. Chem. Res. 2009, 42, 1922-1934.

https://doi.org/10.1021/ar9001697

Otsuki J. J. Mater. Chem. A 2018, 6, 6710-6753.

https://doi.org/10.1039/C7TA11274B

Liu Y., Zhang S., Lindsey J.S. Nat. Prod. Rep. 2018, 35, 879-901.

https://doi.org/10.1039/C8NP00020D

Taniguchi M., Lindsey J.S. Chem. Rev. 2017, 117, 344-535.

https://doi.org/10.1021/acs.chemrev.5b00696

Dudkin S.V., Makarova E.A., Lukyanets E.A. Russ. Chem. Rev. 2016, 85, 700-730.

https://doi.org/10.1070/RCR4565

Chen C.-Y., Sun E., Fan D., Taniguchi M., McDowell B.E., Yang E., Diers J. R., Bocian D.F., Holten D., Lindsey J.S. Inorg. Chem. 2012, 51, 9443-9464.

https://doi.org/10.1021/ic301262k

Brückne C., Samankumara L., Ogikubo J., Syntheses of Bacteriochlorins and Isobacteriochlorins. In: Handbook of Porphyrin Science. Vol. 17. (Kadish K.M., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2012. p. 1-112.

https://doi.org/10.1142/9789814335508_0003

Szyszko B., Latos-Grażyński L. Chem. Soc. Rev. 2015, 44, 3588-3616.

https://doi.org/10.1039/C4CS00398E

Berezin D.B., Karimov D.R., Kustov A.V. Corrols and Their Derivatives: Synthesis, Properties, and Prospects for Practical Application. (Koifman O.I., Ed.) M.: LENAND, 2018. 304 p.

Paolesse R. Synthesis and Modification of Porphyrinoids. In: Topics in Heterocyclic Chemistry. Vol. 33. Springer-Verlag: Berlin, 2014. p. 1-34.

https://doi.org/10.1007/978-3-642-38533-9

Barata J.F.B., Neves M.G.P.M.S., Faustino M.A.F., Tomé A.C., Cavaleiro J.A.S. Chem. Rev. 2017, 117, 3192-3253.

https://doi.org/10.1021/acs.chemrev.6b00476

Porphyrins: Structure, Properties, Synthesis (Enikolopjan N.S., Ed.) M: Nauka, 1985. 333 p.

Askarov K.A., Ageeva T.A., Rashidova S.T. Wastes of Sericulture. Ways of Their Processing, Application Prospects (O.I. Koifman, Ed.) M.: Khimia, 2008. 219 р.

Mironov A.F. Rossiiskii Khimicheskii Zhurnal 2017, 61, 42-68.

Grin M.A., Mironov A.F. Rus. Chem. Bull., Int. Ed. 2016, 65, 333-349.

https://doi.org/10.1007/s11172-016-1307-1

Nyuchev A.V., Otvagin V.F., Gavryushin A.E., Romanenko Yu.I., Koifman O.I., Belykh D.V., Schmalz H.-G., Fedorov A.Yu. Synthesis 2015, 47, 3717-3726.

https://doi.org/10.1055/s-0034-1378876

Otvagin V.F., Nyuchev A.V., Kuzmina N.S., Grishin I.D., Gavryushin A.E., Romanenko Yu.V., Koifman O.I., Belykh D.V., Peskova N.N., Shilyagina N.Yu., Balalaeva I.V., Fedorov A.Yu. Eur. J. Med. Chem. 2018, 144, 740-750.

https://doi.org/10.1016/j.ejmech.2017.12.062

Koifman O.I., Ponomarev G.V. A Method of Obtaining Methylpheophorbide, 2013, Patent RF No 2490273.

Ponomarev G.V., Koifman O.I. Photosensitizer and Method of its Preparation, 2014, Patent RF No 2523380.

Chissov V.I., Skobelkin O.K., Mironov A.F. et.al. Pirogov Russian Journal of Surgery 1994, 12, 3-6.

Hayashi T., Hisaeda Y. Acc. Chem. Res. 2002, 35, 35-43.

https://doi.org/10.1021/ar000087t

Lindsey J.S. Acc. Chem. Res. 2010, 43, 300-311.

https://doi.org/10.1021/ar900212t

Beletskaya I.P., Tyurin V.S., Uglov A., Stern C., Guilard R. Survey of Synthetic Routes for Synthesis and Substitution in Porphyrins. In: Handbook of Porphyrin Science. Vol. 23. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing, 2012. p. 81-278.

https://doi.org/10.1142/9789814397605_0010

Smith K.M. New J. Chem. 2016, 40, 5644-5649.

https://doi.org/10.1039/C6NJ00820H

Brückner C. Acc. Chem. Res. 2016, 49, 1080-1092.

https://doi.org/10.1021/acs.accounts.6b00043

Smith R.M. Strategies fo the Synthesis of Octaalkylporphyrin Systems. In: The Porphyrin Handbook. Vol. 1. (Kadish K.M., Smith K.M., Guilard R., Eds.) Academic Press: San Diego, 2000. p. 1-43.

Lindsey J.S. Synthesis of meso-Substituted Porphyrins. In: The Porphyrin Handbook. Vol. 1. (Kadish K.M., Smith K.M., Guilard R., Eds.) Academic Press: San Diego, 2000. p. 45-118.

Semeykin A.S., Syrbu S.A., Koifman O.I. Izv. Vyss. Ucheb. Zav., Ser. Khim. I Khim Technol. 2004, 47, 46-55.

Lash T.D. Synthesis of Novel Porphyrinoid Chromophores. In: The Porphyrin Handbook. Vol. 2. (Kadish K.M., Smith K.M., Guilard R., Eds.) Academic Press: San Diego, 2000. p. 125-196.

Cheprakov A.V. The Synthesis of π-Extended Porphyrins. In: Handbook of Porphyrin Science Vol. 13. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011. 1-149.

https://doi.org/10.1142/9789814322386_0010

Ishkov Yu.V., Zhilina Z.I., Vodzinskii S.V. In: Advances in Porphyrin Chemistry. Vol. 4. (Golubchikov O.A., Ed.) SPb.: St-PbGU, 2003. p. 31-44.

Smith B.E., Lash T.D. Tetrahedron 2010, 66, 4413-442.

https://doi.org/10.1016/j.tet.2010.04.069

Hiroto S., Miyake Y., Shinokubo H. Chem. Rev. 2016, 117, 2910-3043.

https://doi.org/10.1021/acs.chemrev.6b00427

Tanaka T., Osuka A. Chem. Soc. Rev. 2015, 44, 943-969.

https://doi.org/10.1039/C3CS60443H

Koifman O.I., Ageeva T.A. Porphyrin Polymers: Synthesis, Properties, Applications. M.: LENAND, 2018. 304 p.

Matano Y. Chem. Rev. 2017, 117, 3138-3191.

https://doi.org/10.1021/acs.chemrev.6b00460

Claessens C.G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97.

https://doi.org/10.1002/tcr.20139

Kobayashi N. Synthesis and Characterization of Chiral Phthalocyanines. In: Handbook of Porphyrin Science. Vol. 23. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific, 2012. p. 373-440.

https://doi.org/10.1142/9789814397605_0012

Lomova T.N., Tyulyaeva E.Y., New Trends in the Direct Synthesis of Phthalocyanine/Porphyrin Complexes. In: Direct Synthesis of Metal Complexes. (Kharisov B., Ed.) Elsevier, 2018. p. 239-278.

https://doi.org/10.1016/B978-0-12-811061-4.00006-2

Koifman O.I., Ageeva T.A. Russ. Chem. Bull. 2015, 64, 2001-2011.

https://doi.org/10.1007/s11172-016-1111-y

Ageeva T.A., Golubev D.V., Gorshkova A.S., Ionov A.M., Koifman O.I., Mozhchil R.N., Rumyantseva V.D., Sigov A.S., Fomichev V.V. Macroheterocycles 2018, 11, 155-161.

https://doi.org/10.6060/mhc180171

Ageeva T.A., Golubev D.V., Gorshkova A.S., Ionov A.M., Kohylova E.V., Koifmah O.I., Mozhchil R.N., Rozhkova E.P., Rumyantseva V.D., Sigov A.S., Fomichev V.V. Macroheterocycles 2019, 12, 148-153.

https://doi.org/10.6060/mhc190442f

McConnell I., Li G., Brudvi G.W. Chem. Biol. 2010, 17, 434-447.

https://doi.org/10.1016/j.chembiol.2010.05.005

Bottari G., Trukhina O., Ince M., Torres T. Coord. Chem. Rev. 2012, 256, 2453-2477.

https://doi.org/10.1016/j.ccr.2012.03.011

Drain C.M., Varotto A., Radivojevic I. Chem. Rev. 2009, 109, 1630-1658.

https://doi.org/10.1021/cr8002483

Morisue M., Kobuke Y. Supramolecular Organization of Porphyrins and Phthalocyanines by Use of Biomimetic Coordination Methodology. In: Handbook of Porphyrin Science. Vol. 32. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing, 2014. p. 1-126.

https://doi.org/10.1142/9789814417297_0003

Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Russ. Chem. Rev. 2008, 77, 59-75.

https://doi.org/10.1070/RC2008v077n01ABEH003743

Koifman O.I., Mamardashvili N.Zh. Nanotechnologies in Russia 2009, 4, 253-261.

https://doi.org/10.1134/S1995078009050012

Beletskaya I., Tyurin V.S., Tsivadze A.Y., Guilard R., Stern C. Chem. Rev. 2009, 109, 1659-1713.

https://doi.org/10.1021/cr800247a

Koifman O.I., Ageeva T.A. Polymer Sci. Ser. C 2014, 56, 84-103.

https://doi.org/10.1134/S1811238214010056

Khelevina O.G., Malyasova A.S., Koifman O.I. Russ. J. Gen. Chem. 2020, 90, 1646-1659.

https://doi.org/10.1134/S1070363220090108

Ageeva T.A., Bush A.A., Golubev D.V., Gorshkova A.S., Kamentsev K.E., Koifman O.I., Rumyantseva V.D., Sigov A.S., Fomichev V.V. J. Organomet. Chem. 2020, 922, 121355.

https://doi.org/10.1016/j.jorganchem.2020.121355

Percástegui E.G., Jancik V. Coord. Chem. Rev. 2020, 407, 213165.

https://doi.org/10.1016/j.ccr.2019.213165

Functional Materials Based on Tetrapyrrole Macroheterocyclic Compounds (Koifman O.I., Ed.) М.: LENAND, 2019. 848 p.

Chan K.S., Zhou X., Luo B.S., Mak T.C.W. J. Chem. Soc. Chem. Commun. 1994, 271.

https://doi.org/10.1039/C39940000271

Chan K.S., Zhou X.A., Au M.T., Tam C.Y. Tetrahedron 1995, 51, 3129.

https://doi.org/10.1016/0040-4020(95)00069-K

Hyslop A.G., Kellett M.A., Iovine P.V., Therien M.J. J. Am. Chem. Soc. 1998, 120, 12676.

https://doi.org/10.1021/ja982410h

Ali H., van Lier J.E. Tetrahedron 1994, 50, 11933.

https://doi.org/10.1016/S0040-4020(01)89306-6

Shanmugathasan S., Johnson C.K., Edwards C., Matthews E.K., Dolphin D., Boyle R.W. J. Porphyrins Phthalocyanines 2000, 4, 228.

https://doi.org/10.1002/(SICI)1099-1409(200004/05)4:3<228::AID-JPP199>3.3.CO;2-Z

Chang J.C., Ma C.J., Lee G.H., Peng S.M., Yeh C.Y. Dalton Trans. 2005, 1504.

https://doi.org/10.1039/B417350C

Gauler R., Risch N. Eur. J. Org. Chem. 1998, 1193.

https://doi.org/10.1002/(SICI)1099-0690(199806)1998:6<1193::AID-EJOC1193>3.0.CO;2-K

Sergeeva N.N., Scala A., Bakar M.A., O'Riordan G., O'Brien J., Grassi G., Senge M.O. J. Org. Chem. 2009, 74, 7140.

https://doi.org/10.1021/jo901535c

Santos F.D., Cunha A.C., de Souza M.C.B.V., Tome A.C., Neves M.G.P.M.S., Ferreira V.F., Cavaleiro J.A.S. Tetrahedron Lett. 2008, 49, 7286.

https://doi.org/10.1016/j.tetlet.2008.10.024

Chen Y., Zhang X.P. J. Org. Chem. 2003, 68, 4432.

https://doi.org/10.1021/jo034063m

Takanami T., Hayashi M., Hino F., Suda K. Tetrahedron Lett. 2003, 44, 7353.

https://doi.org/10.1016/S0040-4039(03)01837-9

Khan M.M., Ali H., van Lier J.E. Tetrahedron Lett. 2001, 42, 1615.

https://doi.org/10.1016/S0040-4039(00)02303-0

Gao G.-Y., Chen Y., Zhang X.P. J. Org. Chem. 2003, 68, 6215.

https://doi.org/10.1021/jo034576t

Wang K., Osuka A., Song J. ACS Central Science, 2020, 6, 2159-2178.

https://doi.org/10.1021/acscentsci.0c01300

Gao G.-Y., Chen Y., Zhang X.P. Org. Lett. 2004, 6, 1837.

https://doi.org/10.1021/ol049440b

Gao G.-Y., Ruppel J.V., Allen B., Chen Y., Zhang X.P. J. Org. Chem. 2007, 72, 9060.

https://doi.org/10.1021/jo701476m

Artamkina G.A., Sazonov P.K., Shtern M.M., Grishina G.V., Veselov I.S., Semeikin A.S., Syrbu S.A., Koifman O.I., Beletskaya I.P. Synlett 2008, 45-48.

https://doi.org/10.1055/s-2007-992410

Artamkina G.A., Sazonov P.K., Shtern M.M., Grishina G.V., Veselov I.S., Semeikin A.S., Syrbu S.A., Koifman O.I., Beletskaya I.P. Russ. J. Org. Chem. 2008, 44, 421.

https://doi.org/10.1134/S1070428008030184

Mikhalitsyna E.A., Tyurin V.S., Beletskaya I.P. J. Porphyrins Phthalocyanines 2015, 19, 874.

https://doi.org/10.1142/S1088424615500637

Tyurin V.S., Mikhalitsyna E.A., Semeikin A.S., Beletskaya I.P. Macroheterocycles 2015, 8, 358.

https://doi.org/10.6060/mhc150769b

Polevaya Y.P., Tyurin V.S., Beletskaya I.P. J. Porphyrins Phthalocyanines 2014, 18, 20.

https://doi.org/10.1142/S1088424613500636

Yaschuk Y.P., Tyurin V.S., Beletskaya I.P. Macroheterocycles 2012, 5, 302.

https://doi.org/10.6060/mhc2012.121199b

Locos O.B., Arnold D.P. Org. Biomol. Chem. 2006, 4, 902.

https://doi.org/10.1039/b516989e

Song J., Jang S.Y., Yamaguchi S., Sankar J., Hiroto S., Aratani N., Shin J.Y., Easwaramoorthi S., Kim K.S., Kim D., Shinokubo H., Osuka T. Angew. Chem. Int. Ed. 2008, 47, 6004.

https://doi.org/10.1002/anie.200802026

Mikhalitsyna E.A., Tyurin V.S., Khrustalev V.N., Lonin I.S., Beletskaya I.P. Dalton Trans. 2014, 43, 3563.

https://doi.org/10.1039/c3dt52685b

Mikhalitsyna E.A., Tyurin V.S., Zamilatskov I.A., Khrustalev V.N., Beletskaya I.P. Dalton Trans. 2012, 41, 7624.

https://doi.org/10.1039/c2dt30123g

Ranyuk E.R., Filatov M.A., Averin A.D., Cheprakov A.V., Beletskaya I.P. Synthesis 2012, 44, 393.

https://doi.org/10.1055/s-0031-1289667

Yakushev A.A., Averin A.D., Maloshitskaya O.A., Syrbu S.A., Koifman O.I., Beletskaya I.P. Macroheterocycles 2016, 9, 65.

https://doi.org/10.6060/mhc151206a

Yakushev A.A., Averin A.D., Maloshitskaya O.A., Syrbu S.A., Koifman O.I., Beletskaya I.P. Mendeleev Commun. 2016, 26, 199.

https://doi.org/10.1016/j.mencom.2016.04.006

Averin A.D., Yakushev A.A., Maloshitskaya O.A., Syrbu S.A., Koifman O.I., Beletskaya I.P. Russ. Chem. Bull. 2017, 66, 1456.

https://doi.org/10.1007/s11172-017-1908-3

Yakushev A.A., Averin A.D., Maloshitskaya O.A., Koifman O.I., Syrbu S.A., Beletskaya I.P. Macroheterocycles 2018, 11, 135.

https://doi.org/10.6060/mhc180276a

Yakushev A.A., Chernichenko N.M., Anokhin M.V., Averin A.D., Buryak A.K., Denat F., Beletskaya I.P. Molecules 2014, 19, 940.

https://doi.org/10.3390/molecules19010940

Yakushev A.A., Averin A.D., Sakovich M.V., Vatsouro I.M., Kovalev V.V., Syrbu S.A., Koifman O.I., Beletskaya I.P. J. Porphyrins Phthalocyanines 2019, 23, 1551.

https://doi.org/10.1142/S1088424619501761

Braun A., Tcherniac J. Berichte der Deutschen Chemischen Gesellschaft 1907, 40, 2709-2714.

https://doi.org/10.1002/cber.190704002202

Linstead R. P. J. Chem. Soc. (Resumed) 1934, 1016-1017.

https://doi.org/10.1039/jr9340001016

Berezin B.D. Coordination Compounds of Porphyrins and Phthalocyanine. New York - Toronto: J. Wiley, 1981. 278 p.

Leznoff C.C., Lever A.B.P. In: Phthalocyanines. Properties and Applications (Leznoff C.C., Lever A.B.P., Eds.) New York: VCH, 1989, Vol. 1. 448 p.; 1993, Vol. 2. 305 p.; 1993, Vol. 3. 303 p.; 1996, Vol. 4. 536 p.

Allen C.M., Sharman W.M., Van Lier J.E. J. Porphyrins Phthalocyanines 2001, 5, 161-169.

https://doi.org/10.1002/jpp.324

Walter M.G., Rudine A.B., Wamser C.C. J. Porphyrins Phthalocyanines 2010, 14, 759-792.

https://doi.org/10.1142/S1088424610002689

Wang H., Qi D., Xie Z., Cao W., Wang K., Shang H., Jiang J. Chem. Commun. 2013, 49, 889-891.

https://doi.org/10.1039/C2CC38088A

Fukuda T., Biyajima T., Kobayashi N. J. Am. Chem. Soc. 2010, 132, 6278-6279.

https://doi.org/10.1021/ja100125e

Horii Y., Horie Y., Katoh K., Breedlove B.K., Yamashita M. Inorg. Chem., 2018, 57, 565-574.

https://doi.org/10.1021/acs.inorgchem.7b02124

Wang H., Kobayashi N., Jiang J. Chem. Eur. J. 2012, 18, 1047-1049.

https://doi.org/10.1002/chem.201103037

Korostei Y.S., Tarasova V.G., Pushkarev V.E., Borisova N.E., Vorobiev A.K., Tomilova L.G. Dyes and Pigments 2018, 159, 573-575.

https://doi.org/10.1016/j.dyepig.2018.07.030

Korostei Y.S., Pushkarev V.E., Tolbin A.Y., Dzuban A.V., Chernyak A.V., Konev D.V., Medvedeva T.O., Talantsev A.D., Sanina N.A., Tomilova L.G. Dyes and Pigments 2019, 170, 107648.

https://doi.org/10.1016/j.dyepig.2019.107648

Chen Y., Liu C., Ma F., Qi D., Liu Q., Sun H.-L., Jiang J. Chem. Eur. J. 2018, 24, 8066-8070.

https://doi.org/10.1002/chem.201800408

Pushkarev V.E., Tolbin A.Y., Zhurkin F.E., Borisova N.E., Trashin S.A., Tomilova L.G., Zefirov N.S. Chem. Eur. J. 2012, 18, 9046-9055.

https://doi.org/10.1002/chem.201200361

Korostei Y.S., Tolbin A.Y., Dzuban A.V., Pushkarev V.E., Sedova M.V., Maklakov S.S., Tomilova L.G. Dyes and Pigments 2018, 149, 201-211.

https://doi.org/10.1016/j.dyepig.2017.09.066

Wang K., Qi D., Wang H., Cao W., Li W., Jiang J. Chem. Eur. J. 2012, 18, 15948-15952.

https://doi.org/10.1002/chem.201202888

Balashova I.O., Pushkarev V.E., Shestov V.I., Tomilova L.G., Koifman O.I., Ponomarev G.V. Macroheterocycles 2015, 8, 233-238.

https://doi.org/10.6060/mhc150767p

Tomilova L.G., Pushkarev V.E., Balashova I.O., Shestov V.I., Ponomarev G.V., Koifman O.I., Platonova Y.B., Volov A.N. 2020, Patent RF No 2722309.

Quartarolo A.D., Pérusse D., Dumoulin F., Russo N., Sicilia E. J. Porphyrins Phthalocyanines 2013, 17, 980-988.

https://doi.org/10.1142/S1088424613500569

Yang K., Wang J., Zhao Z., Zhao F., Wang K., Zhang X., Zhang F. Org. Electron. 2020, 83, 105739.

https://doi.org/10.1016/j.orgel.2020.105739

Li W., Liu W., Zhang X., Yan D., Liu F., Zhan C. Macromol. Rapid Commun. 2019, 40, 1900353.

https://doi.org/10.1002/marc.201900353

Kobayashi N., Furuyama T., Satoh K. J. Am. Chem. Soc. 2011, 133, 19642-19645.

https://doi.org/10.1021/ja208481q

Lukyanets E.A., Nemykin V.N. J. Porphyrins Phthalocyanines 2010, 14, 1-40.

https://doi.org/10.1142/S1088424610001799

Kobayashi N., Nakajima S.-I., Ogata H., Fukuda T. Chem. Eur. J. 2004, 10, 6294-6312.

https://doi.org/10.1002/chem.200400275

Muranaka A., Yonehara M., Uchiyama M. J. Am. Chem. Soc. 2010, 132, 7844-7845.

https://doi.org/10.1021/ja101818g

Ince M., Hausmann A., Martínez-Díaz M.V., Guldi D.M., Torres T. Chem. Commun. 2012, 48, 4058-4060.

https://doi.org/10.1039/c2cc30632h

Dubinina T.V., Tomilova L.G., Zefirov N.S. Russ. Chem. Rev. 2013, 82, 865-895.

https://doi.org/10.1070/RC2013v082n09ABEH004353

Dubinina T.V., Trashin S.A., Borisova N.E., Boginskaya I.A., Tomilova L.G., Zefirov N.S. Dyes and Pigments 2012, 93, 1471-1480.

https://doi.org/10.1016/j.dyepig.2011.10.012

Makarov S.G., Suvorova O.N., Litwinski C., Ermilov E.A., Röder B., Tsaryova O., Dülcks T., Wöhrle D. Eur. J. Inorg. Chem. 2007, 2007, 546-552.

https://doi.org/10.1002/ejic.200600843

Dubinina T.V., Ivanov A.V., Borisova N.E., Trashin S.A., Gurskiy S.I., Tomilova L.G., Zefirov N.S. Inorg. Chim. Acta 2010, 363, 1869-1878.

https://doi.org/10.1016/j.ica.2010.02.011

Dubinina T.V., Paramonova K.V., Trashin S.A., Borisova N.E., Tomilova L.G., Zefirov N.S. Dalton Trans. 2014, 43, 2799-2809.

https://doi.org/10.1039/C3DT52726C

Dubinina T.V., Pushkarev V.E., Trashin S., Paramonova K.V., Tomilova L.G. Macroheterocycles 2012, 5, 366-370.

https://doi.org/10.6060/mhc2012.121213d

Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Bürgmann H., Sørum H., Norström M., Pons M.-N., Kreuzinger N., Huovinen P., Stefani S., Schwartz T., Kisand V., Baquero F., Martinez J.L. Nat. Rev. Microbiology 2015, 13, 310-317.

https://doi.org/10.1038/nrmicro3439

Cizmas L., Sharma V.K., Gray C.M., McDonald T.J. Environ. Chem. Lett. 2015, 13, 381-394.

https://doi.org/10.1007/s10311-015-0524-4

Larsson D.G.J. Upsala J. Med. Sci. 2014, 119, 108-112.

https://doi.org/10.3109/03009734.2014.896438

EU Action on Antimicrobial Resistance, https://ec.europa.eu/health/antimicrobial-resistance/eu-action-on-antimicrobial-resistance_en (date of access 20.11.2020).

WHO multi-country survey reveals widespread public misunderstanding about antibiotic resistance, https://www.who.int/en/news-room/detail/16-11-2015-who-multi-country-survey-reveals-widespread-public-misunderstanding-about-antibiotic-resistance (date of access 20.11.2020).

Unceta N., Sampedro M.C., Bakar N.K.A., Gómez-Caballero A., Goicolea M.A., Barrio R.J. J. Chromatogr. A 2010, 1217, 3392-3399.

https://doi.org/10.1016/j.chroma.2010.03.008

Berna M.J., Ackermann B.L., Murphy A.T. Anal. Chim. Acta 2004, 509, 1-9.

https://doi.org/10.1016/j.aca.2003.12.023

Ferrer I., Zweigenbaum J.A., Thurman E.M. J. Chromatogr. A 2010, 1217, 5674-5686.

https://doi.org/10.1016/j.chroma.2010.07.002

Feier B., Gui A., Cristea C., Săndulescu R. Anal. Chim. Acta 2017, 976, 25-34.

https://doi.org/10.1016/j.aca.2017.04.050

Cristea C., Florea A., Tertiș M., Săndulescu R. Immunosensors. In: Biosensors - Micro and Nanoscale Applications (Rinken T., Ed.). IntechOpen, 2015.

https://doi.org/10.5772/60524

Trashin S., Rahemi V., Ramji K., Neven L., Gorun S.M., De Wael K. Nat. Commun. 2017, 8, 16108.

https://doi.org/10.1038/ncomms16108

Khan S.U., Trashin S.A., Korostei Y.S., Dubinina T.V., Tomilova L.G., Verbruggen S.W., De Wael K., ChemPhotoChem 2020, 4, 300-306.

https://doi.org/10.1002/cptc.201900275

Merkel P.B., Kearns D.R. J. Am. Chem. Soc. 1972, 94, 7244-7253.

https://doi.org/10.1021/ja00776a003

Davies M.J. Methods 2016, 109, 21-30.

https://doi.org/10.1016/j.ymeth.2016.05.013

Valduga G., Nonell S., Reddi E., Jori G., Braslavsky S.E. Photochem. Photobiol. 1988, 48, 1-5.

https://doi.org/10.1111/j.1751-1097.1988.tb02778.x

Tanielian C., Wolff C., Esch M. J. Phys. Chem. 1996, 100, 6555-6560.

https://doi.org/10.1021/jp952107s

del Rey B., Keller U., Torres T., Rojo G., Agullo-Lopez F., Nonell S., Marti C., Brasselet S., Ledoux I., Zyss J. J. Am. Chem. Soc. 1998, 120, 12808-12817.

https://doi.org/10.1021/ja980508q

Dubinina T.V., Osipova M.M., Zasedatelev A.V., Krasovskii V.I., Borisova N.E., Trashin S.A., Tomilova L.G., Zefirov N.S. Dyes and Pigments 2016, 128, 141-148.

https://doi.org/10.1016/j.dyepig.2016.01.023

Wilkinson F., Helman W.P., Ross A.B. J. Phys. Chem. Ref. Data 1993, 22, 113-262.

https://doi.org/10.1063/1.555934

Potz R., Goeldner M., Hueckstaedt H., Cornelissen U., Tutass A., Homborg H. ChemInform 2000, 31 (16).

https://doi.org/10.1002/chin.200016159

Nyokong T. Coord. Chem. Rev. 2007, 251, 1707-1722.

https://doi.org/10.1016/j.ccr.2006.11.011

Burtsev I.D., Dubinina T.V., Platonova Y.B., Kosov A.D., Pankratov D.A., Tomilova L.G. Mendeleev Commun. 2017, 27, 466-469.

https://doi.org/10.1016/j.mencom.2017.09.012

Platonova Y.B., Morozov A.S., Burtsev I.D., Korostei Y.S., Ionidi V.Y., Romanovsky B.V., Tomilova L.G. Mendeleev Commun. 2018, 28, 198-199.

https://doi.org/10.1016/j.mencom.2018.03.030

Burtsev I.D., Platonova Y.B., Volov A.N., Tomilova L.G. Polyhedron 2020, 188, 114697.

https://doi.org/10.1016/j.poly.2020.114697

Moiseeva E.O., Platonova Y.B., Konev D.V., Trashin S.A., Tomilova L.G. Mendeleev Commun. 2019, 29, 212-214.

https://doi.org/10.1016/j.mencom.2019.03.033

Novikov R.A., Levina A.A., Borisov D.D., Volodin A.D., Korlyukov A.A., Tkachev Y.V., Platonova Y.B., Tomilova L.G., Tomilov Y.V. Organometallics 2020, 39, 2580-2593.

https://doi.org/10.1021/acs.organomet.0c00113

Burtsev I.D., Platonova Y.B., Volov A.N., Tomilova L.G. Macroheterocycles 2020, 13, 126-129.

https://doi.org/10.6060/mhc200286t

Platonova Y.B., Volov A.N., Tomilova L.G. J. Catalysis 2019, 373, 222-227.

https://doi.org/10.1016/j.jcat.2019.04.003

Platonova Y.B., Volov A.N., Tomilova L.G. Bioorg. Med. Chem. Lett. 2020, 30, 127351.

https://doi.org/10.1016/j.bmcl.2020.127351

Platonova Y.B., Volov A.N., Tomilova L.G. J. Catalysis 2020, 391, 224-228.

https://doi.org/10.1016/j.jcat.2020.08.019

Leyzerovich N.N., Shvedene N.V., Blikova Y.N., Tomilova L.G., Pletnev I.V. Electroanalysis 2001, 13, 246-252.

https://doi.org/10.1002/1521-4109(200103)13:3<246::AID-ELAN246>3.0.CO;2-7

Shvedene N.V., Otkidach K.N., Gumerov M.R., Tarakanov P.A., Tomilova L.G. J. Anal. Chem. 2015, 70, 72-80.

https://doi.org/10.1134/S1061934815010177

Blikova Y.N., Ivanov A.V., Tomilova L.G., Shvedene N.V. Russ. Chem. Bull. 2003, 52, 150-153.

https://doi.org/10.1023/A:1022456601080

Shvedene N.V., Abashev M.N., Arakelyan S.A., Otkidach K.N., Tomilova L.G., Pletnev I.V. J. Solid State Electrochem. 2019, 23, 543-552.

https://doi.org/10.1007/s10008-018-4159-9

Tolbin A.Y., Tomilova L.G. Russ. Chem. Rev. 2011, 80, 531-551.

https://doi.org/10.1070/RC2011v080n06ABEH004198

Shvedene N.V., Otkidach K.N., Ondar E.E., Osipova M.M., Dubinina T.V., Tomilova L.G., Pletnev I.V. J. Anal. Chem. 2017, 72, 95-104.

https://doi.org/10.1134/S1061934817010117

Sheik-Bahae M., Said A.A., Wei T., Hagan D.J., Stryland E.W.V. IEEE J. Quantum Electronics 1990, 26, 760-769.

https://doi.org/10.1109/3.53394

Oluwole D.O., Ngxeke S.M., Britton J., Nyokong T. J. Photochem. Photobiol., A: Chemistry 2017, 347, 146-159.

https://doi.org/10.1016/j.jphotochem.2017.07.032

Sekhosana K.E., Amuhaya E., Nyokong T. Polyhedron 2016, 105, 159-169.

https://doi.org/10.1016/j.poly.2015.12.045

Mgidlana S., Şen P., Nyokong T. J. Mol. Struct. 2020, 1220, 128729.

https://doi.org/10.1016/j.molstruc.2020.128729

Bankole O.M., Osifeko O., Nyokong T. J. Photochem. Photobiol., A: Chemistry 2016, 329, 155-166.

https://doi.org/10.1016/j.jphotochem.2016.06.025

Kuzmina E.A., Dubinina T.V., Borisova N.E., Tarasevich B.N., Krasovskii V.I., Feofanov I., Dzuban A.V., Tomilova L.G. Dyes and Pigments 2020, 174, 108075.

https://doi.org/10.1016/j.dyepig.2019.108075

Kuzmina E.A., Dubinina T.V., Zasedatelev A.V., Baranikov A.V., Makedonskaya M.I., Egorova T.B., Tomilova L.G. Polyhedron 2017, 135, 41-48.

https://doi.org/10.1016/j.poly.2017.06.048

Kuzmina E.A., Dubinina T.V., Dzuban A.V., Krasovskii V.I., Maloshitskaya O.A., Tomilova L.G. Polyhedron 2018, 156, 14-18.

https://doi.org/10.1016/j.poly.2018.08.076

Pan F., Gao S., Chen C., Song C., Zeng F. Mater. Sci. Eng.: R: Reports 2014, 83, 1-59.

https://doi.org/10.1016/j.mser.2014.06.002

Chen Y., Song H., Jiang H., Li Z., Zhang Z., Sun X., Li D., Miao G. Appl. Phys. Lett. 2014, 105, 193502.

https://doi.org/10.1063/1.4901747

Tseng R.J., Huang J., Ouyang J., Kaner R.B., Yang Nano Lett. 2005, 5, 1077-1080.

https://doi.org/10.1021/nl050587l

Kotova M.S., Drozdov K.A., Dubinina T.V., Kuzmina E.A., Tomilova L.G., Vasiliev R.B., Dudnik A.O., Ryabova L.I., Khokhlov D.R. Scientific Reports 2018, 8, 9080.

https://doi.org/10.1038/s41598-018-27332-1

Gonzalez-Anton R., Osipova M.M., Garcia-Hernandez C., Dubinina T.V., Tomilova L.G., Garcia-Cabezon C., Rodriguez-Mendez M.L. Electrochimica Acta 2017, 255, 239-247.

https://doi.org/10.1016/j.electacta.2017.09.168

Martynov A.G., Safonova E.A., Tsivadze A.Y., Gorbunova Y.G. Coord. Chem. Rev. 2019, 387, 325-347.

https://doi.org/10.1016/j.ccr.2019.02.004

Yamashita M. Bull. Chem. Soc. Jpn. 2020, bcsj.20200257.

Sessoli R., Gatteschi D., Caneschi A., Novak M.A. Nature 1993, 365, 141-143.

https://doi.org/10.1038/365141a0

Ishikawa N., Sugita M., Ishikawa T., Koshihara S.-Y., Kaizu Y. J. Am. Chem. Soc. 2003, 125, 8694-8695.

https://doi.org/10.1021/ja029629n

Ishikawa N., Sugita M., Ishikawa T., Koshihara S., Kaizu Y. J. Phys. Chem. B 2004, 108, 11265-11271.

https://doi.org/10.1021/jp0376065

Wang H., Wang B.W., Bian Y., Gao S., Jiang J. Coord. Chem. Rev. 2016, 306, 195-216.

https://doi.org/10.1016/j.ccr.2015.07.004

Ishikawa N., Iino T., Kaizu Y. J. Am. Chem. Soc. 2002, 124, 11440-11447.

https://doi.org/10.1021/ja027119n

Ishikawa N., Otsuka S., Kaizu Y. Angew. Chem. Int. Ed. 2005, 44, 731-3.

https://doi.org/10.1002/anie.200461546

Holmberg R.J., Polovkova M.A., Martynov A.G., Gorbunova Y.G., Murugesu M. Dalton Trans. 2016, 45, 9320-9327.

https://doi.org/10.1039/C6DT00777E

Lan Y., Klyatskaya S., Ruben M., Fuhr O., Wernsdorfer W., Candini A., Corradini V., Lodi Rizzini A., del Pennino U., Troiani F., Joly L., Klar D., Wende H., Affronte M. J. Mater. Chem., C 2015, 3, 9794-9801.

https://doi.org/10.1039/C5TC02011E

Polovkova M.A., Martynov A.G., Birin K.P., Nefedov S.E., Gorbunova Y.G., Tsivadze A.Y. Inorg. Chem. 2016, 55, 9258-9269.

https://doi.org/10.1021/acs.inorgchem.6b01292

Sakaue S., Fuyuhiro A., Fukuda T., Ishikawa N. Chem. Commun. 2012, 48, 5337.

https://doi.org/10.1039/c2cc31125a

Katoh K., Breedlove B.K., Yamashita M. Chem. Sci. 2016, 7, 4329-4340.

https://doi.org/10.1039/C5SC04669F

Sugimoto H., Higashi T., Maeda A., Mori M., Masuda H., Taga T. J. Chem. Soc., Chem. Commun. 1983, 1234-1235.

https://doi.org/10.1039/C39830001234

Maeda A., Sugimoto H. J. Chem. Soc. Faraday Trans. 2 1986, 82, 2019.

https://doi.org/10.1039/f29868202019

Ge J., Qiu Y., Wang H., Su J., Wang P., Chen Z. Chem. - An Asian J. 2020, 15, 3013-3019.

https://doi.org/10.1002/asia.202000655

Ge J.-Y., Wang H.-Y., Li J., Xie J.-Z., Song Y., Zuo J.-L. Dalton Trans. 2017, 46, 3353-3362.

https://doi.org/10.1039/C7DT00298J

Fukuda T., Kuroda W., Ishikawa N. Chem. Commun. 2011, 47, 11686.

https://doi.org/10.1039/c1cc14657b

Katoh K., Horii Y., Yasuda N., Wernsdorfer W., Toriumi K., Breedlove B.K., Yamashita M. Dalton Trans. 2012, 41, 13582-13600.

https://doi.org/10.1039/c2dt31400b

Horii Y., Katoh K., Sugimoto K., Nakanishi R., Breedlove B.K., Yamashita M. Chem. Eur. J. 2019, 3098-3104.

https://doi.org/10.1002/chem.201805368

Morita T., Damjanović M., Katoh K., Kitagawa Y., Yasuda N., Lan Y., Wernsdorfer W., Breedlove B.K., Enders M., Yamashita M. J. Am. Chem. Soc. 2018, 140, 2995-3007.

https://doi.org/10.1021/jacs.7b12667

Tolbin A.Y., Pushkarev V.E., Shulishov E.V., Tomilova L.G. J. Porphyrins Phthalocyanines 2012, 16, 341-350.

https://doi.org/10.1142/S108842461250037X

Horii Y., Katoh K., Breedlove B.K., Yamashita M. Chem. Commun. 2017, 53, 8561-8564.

https://doi.org/10.1039/C7CC03553E

Horii Y., Kishiue S., Damjanović M., Katoh K., Breedlove B.K., Enders M., Yamashita M. Chem. Eur. J. 2018, 24, 4320-4327.

https://doi.org/10.1002/chem.201705378

Martynov A.G., Polovkova M.A., Berezhnoy G.S., Sinelshchikova A.A., Dolgushin F.M., Birin K.P., Kirakosyan G.A., Gorbunova Y. G., Tsivadze A.Y. Inorg. Chem. 2020, 59, 9424-9433.

https://doi.org/10.1021/acs.inorgchem.0c01346

Martynov A.G., Gorbunova Y.G. Polyhedron 2010, 29, 391-399.

https://doi.org/10.1016/j.poly.2009.06.009

Martynov A.G., Gorbunova Y.G., Tsivadze A.Y. Dalton Trans. 2011, 40, 7165-7171.

https://doi.org/10.1039/c1dt10455a

Birin K.P., Gorbunova Y.G., Tsivadze A.Y. Magn. Reson. Chem. 2010, 48, 505-515.

https://doi.org/10.1002/mrc.2612

Gorbunova Y.G., Martynov A.G., Birin K.P., Tsivadze A.Y. Russ. J. Inorg. Chem. 2021, in press.

Wöhrle D., Schnurpfeil G., Makarov S.G., Kazarin A., Suvorova O.N. Macroheterocycles 2012, 5, 191-202.

https://doi.org/10.6060/mhc2012.120990w

The Porphyrin Handbook. Vol. 1-14. (Kadish K.M., Smith K.M., Guilard R., Eds.) San Diego: Academic Press, 2010.

Inabe T., Tajima H. Chem. Rev. 2004, 104, 5503-5534.

https://doi.org/10.1021/cr030649x

Yu D.E.C., Matsuda M., Tajima H., Kikuchi A., Taketsugu T., Hanasaki N., Naito T., Inabe T. J. Mater. Chem. 2009, 19, 718-723.

https://doi.org/10.1039/B814609H

Konarev D.V., Kuzmin A.V., Simonov S.V., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Dalton Trans. 2012, 41, 13841-13847.

https://doi.org/10.1039/c2dt31587d

Konarev D.V., Khasanov S.S., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Inorg. Chem. 2013, 52, 3851-3859.

https://doi.org/10.1021/ic3025364

Konarev D.V., Zorina L.V., Khasanov S.S., Hakimova E.U., Lyubovskaya R.N. New J. Chem. 2012, 36, 48-51.

https://doi.org/10.1039/C1NJ20858F

Konarev D.V., Kuzmin A.V., Faraonov M.A., Ishikawa M., Nakano Y., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Chem. Eur. J. 2015, 21, 1014-1028.

https://doi.org/10.1002/chem.201404925

Konarev D.V., Faraonov M.A., Kuzmin A.V., Khasanov S.S., Nakano Y., Batov M.S., Norko S.I., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. New J. Chem. 2017, 41, 6866-6874.

https://doi.org/10.1039/C7NJ00530J

Konarev D.V., Khasanov S.S., Kuzmin A.V., Nakano Y., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Cryst. Growth Des. 2017, 17, 753-762.

https://doi.org/10.1021/acs.cgd.6b01612

Konarev D.V., Kuzmin A.V., Khasanov S.S., Batov M.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. CrystEngComm 2018, 20, 385-401.

https://doi.org/10.1039/C7CE01918A

Konarev D.V., Kuzmin A.V., Batov M.S., Khasanov S.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. ACS Omega 2018, 3, 14875-14888.

https://doi.org/10.1021/acsomega.8b02221

Konarev D.V., Kuzmin A.V., Nakano Y., Faraonov M.A., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Inorg. Chem. 2016, 55, 1390-1402.

https://doi.org/10.1021/acs.inorgchem.5b01906

Konarev D.V., Kuzmin A.V., Fatalov A.M., Khasanov S.S., Yudanova E.I., Lyubovskaya R.N. Chem. Eur. J. 2018, 24, 8415-8423.

https://doi.org/10.1002/chem.201800873

Konarev D.V., Zorina L.V., Khasanov S.S., Shestakov A.F., Fatalov A.M., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Inorg. Chem. 2018, 57, 583-589.

https://doi.org/10.1021/acs.inorgchem.7b02351

Konarev D.V., Kuzmin A.V., Shestakov A.F., Khasanov S.S., Lyubovskaya R.N. Dalton Trans. 2019, 48, 4961-4972.

https://doi.org/10.1039/C9DT00655A

Konarev D.V., Kuzmin A.V., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Eur. J. Inorg. Chem. 2016, 4099-4103.

https://doi.org/10.1002/ejic.201600680

Konarev D.V., Kuzmin A.V., Nakano Y., Khasanov S.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Dalton Trans. 2018, 47, 4661-4671.

https://doi.org/10.1039/C8DT00459E

Konarev D.V., Kuzmin A.V., Khasanov S.S., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Inorg. Chim. Acta 2020, 510, 119732.

https://doi.org/10.1016/j.ica.2020.119732

Konarev D.V., Troyanov S.I., Kuzmin A.V., Nakano Y., Khasanov S.S., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Organometallics 2015, 34, 879-889.

https://doi.org/10.1021/om501210s

Kubiak R., Janczak J. J. Alloys Compd. 1992, 189, 107-111.

https://doi.org/10.1016/0925-8388(92)90054-D

Janczak J., Kubiak R. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003, 59, m237-m240.

https://doi.org/10.1107/S0108270103009417

Janczak J., Kubiak R., Śledź M., Borrmann H., Grin Y. Polyhedron 2003, 22, 2689-2697.

https://doi.org/10.1016/S0277-5387(03)00361-9

Janczak J., Kubiak R. Inorg. Chim. Acta 2003, 342, 64-76.

https://doi.org/10.1016/S0020-1693(02)01060-5

Konarev D.V., Khasanov S.S., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Chem. Asian J. 2017, 12, 910-919.

https://doi.org/10.1002/asia.201700138

Zhou W., Thompson J.R., Leznoff C.C., Lez D.B. Chem. Eur. J. 2017, 23, 2323-2331.

https://doi.org/10.1002/chem.201604155

Hiroto S., Furukawa K., Shinokubo H., Osuka A. J. Am. Chem. Soc. 2006, 128, 12380-12381.

https://doi.org/10.1021/ja062654z

Wong E.W.Y., Leznoff D.B. J. Porphyrins Phthalocyanines 2012, 16, 154-162.

https://doi.org/10.1142/S1088424611004440

Konarev D.V., Zorina L.V., Khasanov S.S., Lyubovskaya R.N. Dalton Trans. 2012, 41, 9170-9175.

https://doi.org/10.1039/C1DT11040C

Konarev D.V., Karimov D.R., Khasanov S.S., Shestakov A.F., Otsuka A., Yamochi H., Kitagawa H., Lyubovskaya R.N. Dalton. Trans. 2017, 46, 13994-14001.

https://doi.org/10.1039/C7DT02901B

Konarev D.V., Khasanov S.S., Kumin A.V., Nakano Y., Ishikawa M., Otsuka A., Yamochi H., Saito G., Lyubovskaya R.N. Inorg. Chem. 2017, 56, 1804-1813.

https://doi.org/10.1021/acs.inorgchem.6b01932

Kitagawa T., Lee Y., Takeuchi K. Chem. Commun. 1999, 1529-1530.

https://doi.org/10.1039/a903911b

Ishikawa N. Phthalocyanine-based Magnets. In: Functional Phthalocyanine Molecular Materials. Vol. 135. (Jiang J., Ed.) Berlin: Struct. Bonding, 2010. p. 211-228.

https://doi.org/10.1007/978-3-642-04752-7_7

Barraclough C.G., Martin R.L., Mitra S., Sherwood R.C. J. Chem. Phys. 1970, 53, 1638-1642.

https://doi.org/10.1063/1.1674236

Barraclough C.G., Gregson A.K., Mitra S. J. Chem. Phys. 1974, 60, 962-968.

https://doi.org/10.1063/1.1681174

Mitra S., Gregson A.K., Hatfield W., Weller R. Inorg. Chem. 1983, 22, 1729-1732.

https://doi.org/10.1021/ic00154a007

Evangelisti M., Bartolome J., de Jongh L.J., Filoti G. Phys. Rev. B 2002, 66, 144410.

https://doi.org/10.1103/PhysRevB.66.144410

Korepanov V.I., Sedlovets D.M. Macroheterocycles 2019, 12, 232-243.

https://doi.org/10.6060/mhc190864s

Giménez-Agulló N., de Pipaón C.S., Adriaenssens L., Filibian M., Martínez-Belmonte M., Escudero-Adán E.C., Carretta P., Ballester P., Galán-Mascarós J.R. Chem. Eur. J. 2014, 20, 12817-12825.

https://doi.org/10.1002/chem.201402869

Zhang P., Guo Y.-N., Tang J. Coord. Chem. Rev. 2013, 257, 1728-1763.

https://doi.org/10.1016/j.ccr.2013.01.012

Magnani N. Int. J. Quantum Chemistry 2014, 114, 755-759.

https://doi.org/10.1002/qua.24656

Kan J., Wang H., Sun W., Cao W., Tao J., Jiang J. Inorg. Chem. 2013, 52, 8505-8510.

https://doi.org/10.1021/ic400485y

Wang K., Zeng S., Wang H., Dou J., Jiang J. Inorg. Chem. Front. 2014, 1, 167-171.

https://doi.org/10.1039/c3qi00097d

Lomova T.N. Axially Coordinated Metalloporphyrins in Science and Application. Moscow: URSS, 2018. 700 p.

Beltran-Lopez J.F., Sazatornil M., Palacios E., Burriel R. J. Therm. Anal. Calorim. 2016, 125, 579-583.

https://doi.org/10.1007/s10973-016-5268-2

Liu J.-L., Chen Y.-C., Guo F.-S., Tong M.-L. Coord. Chem. Rev. 2014, 281, 26-49.

https://doi.org/10.1016/j.ccr.2014.08.013

Ishikawa N., Sugita M., Wernsdorfer W. Angew. Chem. Int. Ed. 2005, 44, 2931-2935.

https://doi.org/10.1002/anie.200462638

Sharples J.W., Collison D. Polyhedron SI 2013, 66, 15-27.

https://doi.org/10.1016/j.poly.2013.08.005

Korolev V.V., Korolev D.V., Lomova T.N., Mozhzhukhina E.G., Zakharov A.G. Russ. J. Phys. Chem. A 2012, 86, 504-508.

https://doi.org/10.1134/S0036024412030181

Korolev V.V., Romanov A.S., Arefyev I.M. Russ. J. Phys. Chem. A 2006, 80, 464-466.

https://doi.org/10.1134/S0036024406030277

Korolev V.V., Korolev D.V., Ramazanova A.G. J. Therm. Anal. Calorim. 2019, 136, 937-941.

https://doi.org/10.1007/s10973-018-7704-y

Korolev V.V., Klyueva M.E., Arefyev I.M., Ramazanova A.G., Lomova T.N., Zakharov A.G. Macroheterocycles 2008, 1, 68-71.

https://doi.org/10.6060/mhc2008.1.68

Klyueva M.E., Korolev V.V., Arefyev I.M., Lomova T.N. J. Porphyrins Phthalocyanines 2008, 12, 584.

Korolev V.V., Aref'ev I.M., Lomova T.N., Klyueva M.E., Zakharov A.G., Korolev D.V. Russ. J. Phys. Chem. A 2010, 84, 1631-1635.

https://doi.org/10.1134/S0036024410090335

Korolev V.V., Aref'ev I.M., Lomova T.N., Ovchenkova E.N., Klyueva M.E., Zakharov A.G., Korolev D.V. Russ. J. Phys. Chem. A 2012, 86, 1165-1170.

https://doi.org/10.1134/S0036024412070102

Lomova T.N., Korolev V.V., Ramazanova A.G., Ovchenkova E.N. J. Porphyrins Phthalocyanines 2015, 19, 1262-1269.

https://doi.org/10.1142/S1088424615501114

Korolev V.V., Lomova T.N., Ramazanova A.G., Mozhzhukhina E.G. Synth. Met. 2016, 220, 502-507.

https://doi.org/10.1016/j.synthmet.2016.07.026

Korolev V.V., Lomova T.N., Ramazanova A.G., Mozhzhukhina E.G. Mend. Commun. 2016, 26, 301-303.

https://doi.org/10.1016/j.mencom.2016.07.011

Korolev V.V., Lomova T.N., Ramazanova A.G., Korolev D.V., Mozhzhukhina E.G. J. Organomet. Chem. 2016, 819, 209-215.

https://doi.org/10.1016/j.jorganchem.2016.07.002

Lomova T.N., Korolev V.V., Bichan N.G., Ovchenkova E.N., Ramazanova A.G., Balmasova O.V., Gruzdev M.S. Synth. Met. 2019, 253, 116-121.

https://doi.org/10.1016/j.synthmet.2019.05.004

Korolev V.V., Lomova T.N., Ramazanova A.G. Radioelektr. Nanosistem. Inform. Tekhnol. [Radio Electronics. Nanosystems. Information Technology] 2019, 11, 199-216 (in Russ.).

Korolev V.V., Lomova T.N., Maslennikova A.N., Korolev D.V., Shpakovsky D.B., Zhang J., Milaeva E.R. J. Magn. Magn. Mater. 2016, 401, 86-90.

https://doi.org/10.1016/j.jmmm.2015.10.014

Miller J.S., Calabrese J.C., McLean R.S., Epstein A.J. Adv. Mater. 1992, 4, 498-501.

https://doi.org/10.1002/adma.19920040710

Miller J.S., Vazquez C., Calabrese J.C., McLean R.S., Epstein A.J. Adv. Mater. 1994, 6, 217-221.

https://doi.org/10.1002/adma.19940060306

Böhm A., Vazquez C., McLean R.S., Calabrese J.C., Kalm S.E., Manson J.L., Epstein A.J., Miller J.S. Inorg. Chem. 1996, 35, 3083-3088.

https://doi.org/10.1021/ic9516267

Brandon E.J., Arif A.M., Burkhart B.M., Miller J.S. Inorg. Chem. 1998, 37, 2792-2798.

https://doi.org/10.1021/ic9710768

Zhang Y.J. Alloys and Compounds 2019, 787, 1173-1186.

https://doi.org/10.1016/j.jallcom.2019.02.175

Ovchenkova E.N., Bichan N.G., Tsaturyan A.A., Kudryakova N.O., Gruzdev M.S., Gostev F.E., Shelaev I.V., Nadtochenko V.A., Lomova T.N. J. Phys. Chem. C 2020, 124, 4010-4023.

https://doi.org/10.1021/acs.jpcc.9b11661

Andreenko A.S., Belov K.P., Nikitin S.A. Uspehi fizicheskih nauk 1989, 158, 553-579. (in Russ.).

https://doi.org/10.3367/UFNr.0158.198908a.0553

Milaeva E.R., Gerasimova O.A., Zhang J., Shpakovsky D.B., Syrbu S.A., Semeykin A.S., Koifman O.I., Kireeva E.G., Shevtsova E.F., Bachurin S.O., Zefirov N.S. J. Inorg. Biochem. 2008, 102, 1348-1358.

https://doi.org/10.1016/j.jinorgbio.2008.01.022

Stuzhin P.A., Hamdush M., Ziener U. Inorg. Chim. Acta 1995, 236, 131-139.

https://doi.org/10.1016/0020-1693(95)04633-K

Edwards W.D., Weiner B., Zerner M.C. J. Phys. Chem. 1988, 92, 6188-6197.

https://doi.org/10.1021/j100333a006

Korolev D.V. Abstract of the Candidate's Dissertation in Chemistry. Ivanovo: G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 2012. 16 p.

Lomova T.N., Korolev V.V., Zakharov A.G. Mater. Sci. Eng. B 2014, 186, 54-63.

https://doi.org/10.1016/j.mseb.2014.03.006

Anikin M.S., Tarasov E.N., Kudrevatykh N.V., Osadchenko V.H., Zinin A.V. Acta Phys. Pol., A 2015, 127, 635-637.

https://doi.org/10.12693/APhysPolA.127.635

Piskorsky P., Korolev D.V., Valeev R.A., Morgunov R.B., Kunitsyna E.I. Physics and Engineering of Permanent Magnets (Kablov E.N., Ed.) Moscow: VIAM, 2018. 392 p. (in Russ.).

Bichan N.G., Ovchenkova E.N., Gruzdev M.S., Lomova T.N. Zh. Strukt. Khimii [Russ. J. Struct. Chem.] 2018, 59, 734-741.

https://doi.org/10.26902/JSC20180332

Lomova T.N., Korolev V.V., Ramazanova A.G., Balmasova O.V., Mozhzhukhina E.G. XIII Intern. Conf. «Synthesis and Applications of Porphyrins and Their Analogs» (ICPC-13), Ivanovo: Ivanovo State University of Chemistry and Technology, 2019. p. 125.

Lomova T.N., Andrianova L.G., Berezin B.D. Zh. Fiz. Khim. 1987, 61, 2921-2928.

Korolev V.V., Lomova T.N., Ramazanova A.G., Balmasova O.V., Mozhzhukhina E.G. J. Porphyrins Phthalocyanines 2019, 23, 1110-1117.

https://doi.org/10.1142/S1088424619501220

Gurek A.G., Basova T., Luneau D., Lebrun C., Kol'tsov E., Hassan A.K., Ahsen V. Inorg. Chem. 2006, 45, 1667-1676.

https://doi.org/10.1021/ic051754n

Tishin A.M., Spichcin Y.I. The Magnetocaloric Effect and Its Applications, Institute of Physics Publishing, Bristol and Philadelphia, 2003. 476 p.

https://doi.org/10.1887/0750309229

Korolev D.V., Korolev V.V., Lomova T.N., Mozhzhukhina E.G., Zakharov A.G. IV Regional Conference of Young Scientists Theoretical and Experimental Chemistry of Liquid-phase Systems (Krestovsky reading) Ivanovo: G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 2010. p. 28 (in Russ.).

Kudrevatykh N.V., Volegov A.S. Magnetism of Rare Earth Metals and Their Intermetallic Compounds. Yekaterinburg, 2015, 198 p. (in Russ.) [Кудреватых Н.В., Волегов А.С. Магнетизм редкоземельных металлов и их интерметаллических соединений. Екатеринбургб 2015. 198 с.].

Shultz D.A., Sandberg K.A. J. Phys. Org. Chem. 1999, 12, 10-18.

https://doi.org/10.1002/(SICI)1099-1395(199901)12:1<10::AID-POC85>3.0.CO;2-G

Xiang L.C., Liu Q., Guo C.-C., Tan Z. J. Porphyrins Phthalocyanines 2010, 14, 825-831.

https://doi.org/10.1142/S1088424610002665

Mironov A.F. Macroheterocycles 2011, 4, 186-208.

https://doi.org/10.6060/mhc2011.3.08

Yoon I., Demberelnyamba D., Li J.Z., Shim Y.K. In: Handbook of Porphyrin Science. Vol. 33. (Kadish K.M., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co Pte Ltd, 2014. p. 167.

https://doi.org/10.1142/9789814417297_0010

Oluwole D., Yagodin A.V., Britton J., Martynov A.G., Gorbunova Y.G., Tsivadze A.Yu., Nyokong T. Dalton Trans. 2017, 46, 16190-16198.

https://doi.org/10.1039/C7DT03867D

Lan Y., Klyatskaya S., Ruben M. In: Lanthanides and Actinides in Molecular Magnetism (Layfeld R.A., Murugesu M., Eds.) Wiley-VCH Verlag GmbH & Co. KGaA, 2015. p. 223.

https://doi.org/10.1002/9783527673476.ch8

Damjanovic' M., Morita T., Katoh K. Yamashita M., Enders M. Chem. Eur. J. 2015, 21, 14421-14432.

https://doi.org/10.1002/chem.201501944

Bryant D.A., Hunter C.N., Warren M.J. J. Biol. Chem. 2020, 295, 6888-6925.

https://doi.org/10.1074/jbc.REV120.006194

Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., Grätzel M. Nat. Chem. 2014, 6, 242-247.

https://doi.org/10.1038/nchem.1861

La Rosa M., Payne E.H., Credi A. ChemistryOpen 2020, 9, 200-213.

https://doi.org/10.1002/open.201900336

Lemon C.M., Karnas E., Han X., Bruns O.T., Kempa T.J., Fukumura D., Bawendi M.G., Jain R.K., Duda D.G., Nocera J. Am. Chem. Soc. 2015, 137, 9832-9842.

https://doi.org/10.1021/jacs.5b04765

Zenkevich E.I., Gaponenko S.V., Sagun E.I., von Borczyskowski C. Reviews in Nanoscience and Nanotechnology (Chen W., Zhao Y., Juzenas P., Eds.) USA: American Scientific Publishers, 2013, 2(3). p. 184-207.

https://doi.org/10.1166/rnn.2013.1030

Jeong Y.-H., Son M., Yoon H., Kim P., Lee D.-H., Kim D., Jang W.-D. Angew. Chem. Int. Ed. 2014, 53, 6925-6928.

https://doi.org/10.1002/anie.201400835

Shao S., Rajendiran V., Jonathan F., Lovell J.F. Coord. Chem. Rev. 2019, 379, 99-120.

https://doi.org/10.1016/j.ccr.2017.09.002

Zenkevich E.I., von Borczyskowski C. Formation Principles and Excited States Relaxation in Self-Assembled Complexes: Multiporphyrin Arrays and "Semiconductor CdSe/ZnS Quantum Dot-Porphyrin" Nanocomposites. In: Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Vol. 22 - Biophysical and Physicochemical Studies of Tetrapyrroles (Kadish K., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2012. p. 67-168.

https://doi.org/10.1142/9789814397605_0006

Fukuzumi S., Lee Y.-M., Nam W. ChemPhotoChem 2018, 2, 121-135.

https://doi.org/10.1002/cptc.201700146

Hood D., Sahin T., Parkes-Loach P.S., Jiao J., Harris Michelle A., Dilbeck P., Niedzwiedzki D.M., Kirmaier C., Loach P.A., Bocian D.F., Lindsey J.S., Holten D. ChemPhotoChem 2018, 2, 300-313.

https://doi.org/10.1002/cptc.201700182

Lee H., Hong K.I., Jang W.D. Coord. Chem. Rev. 2018, 354, 46-73.

https://doi.org/10.1016/j.ccr.2017.06.008

Khadria A., Fleischhauer J., Boczarow I., Wilkinson J.D., Kohl M.M., Anderson H.L. Science 2018, 4, 153-16.

https://doi.org/10.1016/j.isci.2018.05.015

Huang W.B., Gu W., Huang H.X., Wang J.B., Shen W.X., Lv Y.Y., Shen J. Dyes and Pigments 2017, 143, 427-435.

https://doi.org/10.1016/j.dyepig.2017.05.001

Gaponenko S.V., Demir H.V. Applied Nanophotonics. Cambridge: Cambridge University Press, 2018.

https://doi.org/10.1017/9781316535868

Pal K. Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications. USA: Jenny Stanford Publishing, 1st Edit., 2019. 412 p.

https://doi.org/10.1201/9780429000966

Pleus R.C., Murashov V. Physico-Chemical Properties of Nanomaterials. USA: Pan Stanford, 2018. 338 p.

https://doi.org/10.1201/9781351168601

Petersen N.O. Foundations for Nanoscience and Nanotechnology. London: CRC Press, 2017.

https://doi.org/10.1201/9781315381381

Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics (Zenkevich E., von Borczyskowski C., Eds.) Singapore: Pan Stanford, 2016. 408 p.

Liu M., Voznyy O., Sabatini R., García de Arquer F.P., Munir R., Balawi A.H., Lan X., Fan F., Walters G., Kirmani A.R., Hoogland S., Laquai F., Amassian A., Sargent E.H. Nat. Mater. 2017, 16, 258-263.

https://doi.org/10.1038/nmat4800

Safi M., Domitrovic T., Kapur A., Zhan N., Aldeek F., Johnson J.E., Mattoussi H. Bioconjugate Chem. 2017, 28, 64−74.

https://doi.org/10.1021/acs.bioconjchem.6b00609

Kundu S., Patra A. Chem. Rev. 2017, 117, 712-757.

https://doi.org/10.1021/acs.chemrev.6b00036

Sayevich V., Guhrenz C., Dzhagan V.M., Sin M., Werheid M., Cai B., Borchardt L., Widmer J., Zahn D.R.T., Brunner E., Lesnyak V., Gaponik N., Eychmueller A. ACS Nano 2017, 11, 1559-157.

https://doi.org/10.1021/acsnano.6b06996

Kovalenko M.V., Manna L., Cabot, Hens Z., Talapin D.V., Kagan C.R., Klimov V.I., Rogach A.L., Reiss P., Milliron D.J., Guyot-Sionnnest P., Konstantatos G., Parak W.J., Hyeon T., Korgel B.A., Murray C.B., Heiss W. ACS Nano 2015, 9, 1012-1057.

https://doi.org/10.1021/nn506223h

Orlova A.O., Gromova Yu.A., Maslov V.G., Prudnikau A.V., Artemyev M.V., Fedorov A.V., Baranov A.V. J. Applied Phys. 2013, 113, 214305.

https://doi.org/10.1063/1.4809645

Wolfbeis O.S. Chem. Soc. Rev. 2015, 44, 4743-4768.

https://doi.org/10.1039/C4CS00392F

McBride J.R, Pennycook T.J., Pennycook S.J., Rosenthal S.J. ACS Nano 2013, 7, 8358-8365.

https://doi.org/10.1021/nn403478h

Stupak A., Blaudeck T., Zenkevich E., Krause S., von Borczyskowski C. Phys. Chem. Chem. Phys. 2018, 20, 18579-18600.

https://doi.org/10.1039/C8CP02846J

Plehn T., Ziemann D., May V. Phys. Chem. Chem. Phys. 2018, 20, 26870-26884.

https://doi.org/10.1039/C8CP03978J

Boles M.A., Ling D., Hyeon T., Talapin D.V. Nat. Mater. 2016, 15, 141-153.

https://doi.org/10.1038/nmat4526

Duim H., Fang H.-H., Adjokatse S., ten Brink G.H., Marques M.A.L., Kooi B.J., Blake G.R., Botti S., Loi1 M.A. Appl. Phys. Rev. 2019, 6, 031401.

https://doi.org/10.1063/1.5088342

Zeng B., Palui G., Zhang C., Zhan N., Wang W., Ji X., Chen B., Mattoussi H. Chem. Mater. 2018, 30, 225−238.

https://doi.org/10.1021/acs.chemmater.7b04204

Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C., Bulovi V. ACS Nano 2014, 8, 5863-5872.

https://doi.org/10.1021/nn500897c

Kilin D.S., Tsemekham K., Zenkevich E.I., Prezho O.V. von Borczyskowski C. J. Photochem. Photobiol. A 2007, 190, 342-351.

https://doi.org/10.1016/j.jphotochem.2007.02.017

Voznyy O. J. Phys. Chem. C 2011, 115, 15927-15932.

https://doi.org/10.1021/jp205784g

Kilina S.V., Tamukong P.K., Kilin D.S. Acc. Chem. Res. 2016, 49, 2127−2135.

https://doi.org/10.1021/acs.accounts.6b00196

Zenkevich E., Shulga A., Cichos F., Petrov E.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. B 2005, 109, 8679-8692.

https://doi.org/10.1021/jp040595a

Blaudeck T., Zenkevich E.I., Cichos F., von Borczyskowski C. J. Phys. Chem. C 2008, 112, 20251-20257.

https://doi.org/10.1021/jp8074817

Blaudeck T., Zenkevich E.I., Abdel-Mottaleb M., Szwaykowska K., Kowerko D., Cichos F., von Borczyskowski C. ChemPhysChem 2012, 13, 959-972.

https://doi.org/10.1002/cphc.201100711

Zenkevich E.I., Blaudeck T., Kowerko D., Stupak A.P., Cichos F., von Borczyskowski C. Macroheterocycles 2012, 5, 98-114.

https://doi.org/10.6060/mhc2012.120571z

Zhong C., Sangwan V.K., Kang J., Luxa J., Sofer Z., Hersam M.C., Weiss E.A. J. Phys. Chem. Lett. 2019, 10, 493−499.

https://doi.org/10.1021/acs.jpclett.8b03543

Raevskaya A., Rozovik O., Novikova A., Selyshchev O., Stroyuk O., Dzhagan V., Goryacheva I., Gaponik N., Zahn D.R.T., Eychmüller A. RSC Adv. 2018, 8, 7550-7557.

https://doi.org/10.1039/C8RA00257F

Pong B.-K., Trout B.L., Lee J.-Y. Langmuir 2008, 24, 5270-5276.

https://doi.org/10.1021/la703431j

Schapotschnikow P., Hommersom B., Vlugt T.J.H. J. Phys. Chem. C 2009, 113, 12690-12698.

https://doi.org/10.1021/jp903291d

Kowerko D., Krause S., Amecke N., Abdel-Mottaleb M., Schuster J. von Borczyskowski C. Int. J. Mol. Sci. 2009, 10, 5239-5256.

https://doi.org/10.3390/ijms10125239

Kowerko D., Schuster J., Amecke N., Abdel-Mottaleb M., Dobrawa R., Würthner F., von Borczyskowski C. Phys. Chem. Chem. Phys. 2010, 12, 4112-4123.

https://doi.org/10.1039/b910308b

Chernook A.V., Shulga A.M., Zenkevich E.I., Rempel U., von Borczyskowski C. J. Phys. Chem. 1996, 100, 1918-1926.

https://doi.org/10.1021/jp951108h

Chernook A.V., Rempel U., von Borczyskowski C., Zenkevich E.I., Shulga A.M. Chem. Phys. Lett. 1996, 254, 229-241.

https://doi.org/10.1016/0009-2614(96)00244-8

Lecture Notes in Nanoscale Science and Technology. Core/Shell Quantum Dots. Synthesis, Properties and Devices Vol. 18. (Tong X., Wang Z.M., Eds.) Switzerland: Springer Nature AG. 2020.

https://doi.org/10.1007/978-3-030-46596-4

Zhang C., Jin Z., Zeng B., Wang W., Palui G., Mattoussi H. J. Phys. Chem. B 2020, 124, 4631−4650.

https://doi.org/10.1021/acs.jpcb.0c02177

Stroyuk O., Raievska O., Zahn D.R.T. Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots. In: Lecture Notes in Nanoscale Science and Technology. Core/Shell Quantum Dots. Synthesis, Properties and Devices. Vol. 18. (Tong X., Wang Z.M., Eds.) Switzerland: Springer Nature AG, 2020. p. 67−122.

https://doi.org/10.1007/978-3-030-46596-4_3

Agranovich V.M., Galanin M.D. Electronic Excitation Energy Transfer in Condensed Matter. Amsterdam, New York: North-Holland Pub. Co., 1982. 371 p.

Zenkevich E.I., Sagun E.I., Shulga A.M., Knyukshto V.N., Yarovoi A.A., Stupak A.P., von Borczyskowski C. Opt. Spectrosc. 2007, 103, 998−1009.

https://doi.org/10.1134/S0030400X0712020X

Klimov V. Nanocrystall Quantum Dots. Washington: CRS Press LLC, 2010.

Dabbousi B.O., Redriguez-Vejo J., Mikulec F.V., Heine J.R., Mattousi H., Ober R., Jensen K.F., Bawendi M.G. J. Phys. Chem. B 1997, 101, 9463−9475.

https://doi.org/10.1021/jp971091y

Zenkevich E.I., Blaudeck Th., Heidernätsch M., Cichos F., von Borczyskowski C. Theor. Exper. Chem. 2009, 45, 23-34.

https://doi.org/10.1007/s11237-009-9058-9

Zenkevich E.I., Stupak A.P., Kowerko D., von Borczyskowski C. Chem. Phys. 2012, 406, 21−29.

https://doi.org/10.1016/j.chemphys.2012.02.008

Zenkevich E., Stupak A., Göhler C., Krasselt C., von Borczyskowski C. ACS Nano 2015, 9, 2886−2903.

https://doi.org/10.1021/nn506941c

Inerbaev T.M., Masunov A.E., Khondaker S.I., Dobrinescu A., Plamadă A.-V., Kawazoe Y. J. Chem. Phys. 2009, 131, 044106.

https://doi.org/10.1063/1.3135193

Kilina S., Kilin D., Tretiak S. Chem. Rev. 2015, 115, 5929-5978.

https://doi.org/10.1021/acs.chemrev.5b00012

Dayal S., Burda C. J. Am. Chem. Soc. 2007, 129, 7977−7981.

https://doi.org/10.1021/ja071457c

Liptay T.J., Ram R.J. Appl. Phys. Lett. 2006, 89, 223132.

https://doi.org/10.1063/1.2400107

De Mello Donegá. Nanoparticles. Berlin, Heidelberg: Springer-Verlag, 2014.

https://doi.org/10.1007/978-3-662-44823-6

Fischer T., Heinrich K., Spudat C., Martin J., Otto T., Gessner T., Kroll L. Microelectron. Eng. 2015, 146, 57−61.

https://doi.org/10.1016/j.mee.2015.03.064

Möbius M., Ma X.-Y., Martin J., Doty M.F., Otto T., Gessner T. Proc. SPIE 2015, 9370, 93701X.

https://doi.org/10.1117/12.2185047

Möbius M., Martin J., Hartwig M., Baumann R.R., Otto T., Gessner T. AIP Adv. 2016, 6, 085309.

https://doi.org/10.1063/1.4961145

Korten T., Nitzsche B., Gell C., Ruhnow F., Leduc C., Diez S. Fluorescence Imaging of Single Kinesin Motors on Immobilized Microtubules. In: Methods in Molecular Biology (Single Molecule Analysis) Vol. 783. (Peterman E., Wuite G., Eds.) Springer Protocols: Humana Press, 2011. p. 121-137.

https://doi.org/10.1007/978-1-61779-282-3_7

Korten S., Albet-Torres N., Paderi F., ten Siethoff L., Diez S., Korten T., te Kronnie G., Månsson A. Lab Chip 2013, 13, 866-876.

https://doi.org/10.1039/c2lc41099k

Selyshchev O., Dzhagan V., Zenkevich E., Stroyuk A., Raevskaya A., Sheinin V., Kulikova O., Koifman O., Zahn D.R.T. Electronic Interaction Between Ag-In-S, Ag-In-S/ZnS Quantum Dots and Quaternary Amine Aromatic Molecules - A Photoluminescence Quenching Study. In: Book of Abstracts of the 14th International Symposium on Functional π-Electron Systems (June 2-7) 2019, Berlin. p. #106.

Sheinin V., Kulikova O., Zenkevich E., Selyshchev O., Dzhagan V., Stroyuk A., Raevskaya A., Koifman O., Zahn D.R.T. Tetra(N-methyl-4-pyridyl)porphyrin Sonde Report on the Surface of AIS/ZnS/GSH Quantum Dots in Water. In: Book of Abstr. of the 1st International Conference on Noncovalent Interactions (2-6 September) 2019, Lisbon. p. P82.

Zenkevich E., Sheinin V., Kulikova O., Selyshchev O., Dzhagan V., Stroyuk O., Raievska O., Koifman O., von Borczyskowski C., Zahn D.R.T. Self-Assembled Nanocomposites Based on Semiconductor Quantum Dots and Porphyrin Molecules: Interface Chemistry, Optical Properties and Energy Relaxation Processes. In: Book of Abstracts of Webinar on Materials Science and Nanotechnology. Coalesce Research Group, 33 Market Point Dr., Greenwille SC 29607, USA (July 29-30) 2020. p. 11.

Carella A., Borbone F., Centore R. Front. Chem. 2018, 6, 481.

https://doi.org/10.3389/fchem.2018.00481

Arooj Q., Wilson G.J., Wang F. Materials 2019, 12, 4024.

https://doi.org/10.3390/ma12244024

Iftikhar H., Sonai G.G., Hashmi S.G., Nogueira A.F., Lund P.D. Materials 2019, 12, 1998.

https://doi.org/10.3390/ma12121998

Widhiyanuriyawan D., Trihutomo P., Soeparman S., Yuliati L. Scientific World Journal 2020, 2020, 7910702.

https://doi.org/10.1155/2020/7910702

Koyyada G., Chitumalla R.K., Thogiti S., Kim J.H., Jang J., Chandrasekharam M., Jung J.H. Molecules 2019, 24, 3554.

https://doi.org/10.3390/molecules24193554

Luceño-Sánchez J.A., Díez-Pascual A.M., Capilla R.P. Int. J. Mol. Sci. 2019, 20, 976.

https://doi.org/10.3390/ijms20040976

Ezhov A.V., Vyalba F.Yu., Zhdanova K.A., Mironov A.F., Zhizhin K.Yu., Bragina N.A. Fine Chemical Technologies 2018, 13(2), 21-30. (in Russ.).

https://doi.org/10.32362/2410-6593-2018-13-2-21-30

Longo C., De Paoli M.-A. J. Braz. Chem. Soc. 2003, 14(6), 889-901.

https://doi.org/10.1590/S0103-50532003000600005

Ezhov A.V., Zhdanova K.A., Bragina N.A., Mironov A.F. Macroheterocycles 2016, 9(4), 337-352.

https://doi.org/10.6060/mhc160752e

Vittal R., Ho K.-C. Renewable and Sustainable Energy Reviews 2017, 70, 920-935.

https://doi.org/10.1016/j.rser.2016.11.273

Eguchi K., Koga H., Sekizawa K., Sasaki K. J. Ceramic Soc. Japan 2000, 108(12), 1067-1071.

https://doi.org/10.2109/jcersj.108.1264_1067

Septiawan T.Y., Sumardiasih S., Obina W.M., Supriyanto A., Khairuddin, Cari C. AIP Conference Proceedings 2017, 1868, 060010.

https://doi.org/10.1063/1.4995174

Banik A., Ansari M.S., Qureshi M. ACS Omega 2018, 3, 14482-14493.

https://doi.org/10.1021/acsomega.8b02520

Saeidi M., Abrari M., Ahmadi M. Appl. Phys. A 2019, 125, 409.

https://doi.org/10.1007/s00339-019-2697-3

Valerio T.L., Maia G.A.R., Gonçalves L.F., Viomar A., Banczek E. do P., Rodrigues P.R.P. Mater. Res. 2019, 22(suppl. 1), e20180864.

https://doi.org/10.1590/1980-5373-mr-2018-0864

Chen L.H., Xue B.F., Luo Y.H. Chin. Phys. Lett. 2007, 24(2), 555-558.

Chen D., Zhang Q., Wang G. Electrochem. Commun. 2007, 9, 2755-2759.

https://doi.org/10.1016/j.elecom.2007.09.013

Jung Y.S., Yoo B., Lim M.K., Kim K.J. Electrochim. Acta 2009, 54, 6286-6291.

https://doi.org/10.1016/j.electacta.2009.06.006

Gu P., Yang D., Zhu X., Sun H., Wangyang P., Li J., Tian H. AIP Adv. 2017, 7, 105219.

https://doi.org/10.1063/1.5000564

Lu J.F., Bai J., Xu X.B., Li Z.H., Cao K., Cui J., Wang M.K. Chin. Sci. Bull. 2012, 57(32), 4131-4142.

https://doi.org/10.1007/s11434-012-5409-3

Wang M., Grätzel C., Zakeeruddin S.M., Grätzel M. Energy Environ. Sci. 2012, 5, 9394-9405.

https://doi.org/10.1039/c2ee23081j

Stergiopoulos T., Rozi E., Karagianni C.-S., Falaras P. Nanoscale Res. Lett. 2011, 6, 307.

https://doi.org/10.1186/1556-276X-6-307

Cao Y., Zhang J., Bai Y., Li R., Zakeeruddin S.M., Grätzel M., Wang P. J. Phys. Chem., C 2008, 112, 13775-13781.

https://doi.org/10.1021/jp805027v

Önen T., Karakuş M.Ö., Coşkun R., Çetin H. J. Photochem. Photobiol., A: Chemistry 2019, 385, 112082.

https://doi.org/10.1016/j.jphotochem.2019.112082

Shen S.-Y., Dong R.-X., Shih P.-T., Ramamurthy V., Lin J.-J., Ho K.-C. ACS Appl. Mater. Interfaces 2014, 6(21), 18489-18496.

https://doi.org/10.1021/am505394v

Pujiarti H., Arsyad W.S., Shobih, Muliani L., Hidayat R. IOP Conf. Series: J. Physics: Conf. Series 2018, 1011, 012020.

https://doi.org/10.1088/1742-6596/1011/1/012020

Duan Y., Tang Q., Chen Y., Zhao Z., Lv Y., Hou M., Yang P., He B., Yu L. J. Mater. Chem., A 2015, 3, 5368-5374.

https://doi.org/10.1039/C4TA06393G

Nam S.-H., Lee K.H., Yu J.-H., Boo J.-H. Appl. Sci. Converg. Technol. 2019, 28(6), 194-206.

https://doi.org/10.5757/ASCT.2019.28.6.194

Shalini S., Balasundaraprabhu R., Satish Kumar T., Prabavathy N., Senthilarasu S., Prasanna S. Int. J. Energy Res. 2016, 40, 1303-1320.

https://doi.org/10.1002/er.3538

Sharma K., Sharma V., Sharma S.S. Nanoscale Res. Lett. 2018, 13, 381.

https://doi.org/10.1186/s11671-018-2760-6

Qin Y., Peng Q. Int. J. Photoenergy 2012, 2012, 291579.

https://doi.org/10.1155/2012/291579

Abate A., Planells M., Hollman D.J., Stranks S.D., Petrozza A., Kandada A.R.S., Vaynzof Y., Pathak S.K., Robertson N., Snaith H.J. Adv. Energy Mater. 2014, 4, 1400166.

https://doi.org/10.1002/aenm.201400166

Hu Y., Ivaturi A., Planells M., Boldrini C.L., Biroli A.O., Robertson N. J. Mater. Chem., A 2016, 4, 2509.

https://doi.org/10.1039/C5TA09133K

Hwang S., Lee J.H., Park C., Lee H., Kim C., Park C., Lee M.H., Lee W., Park J., Kim K., Park N.G., Kim C. Chem. Commun. 2007, 46, 4887.

https://doi.org/10.1039/b709859f

Mane S.B., Cheng C.F., Sutanto A.A., Datta A., Dutta A., Hung C.H. Tetrahedron 2015, 71, 7977.

https://doi.org/10.1016/j.tet.2015.08.068

Al-horaibi S.A., Gaikwad S.T., Rajbhoj A.S. Adv. Mat. Lett. 2018, 9(5), 353-362.

https://doi.org/10.5185/amlett.2018.1740

Chen G., Sasabe H., Igarashi T., Hong Z., Kido J. J. Mater. Chem., A 2015, 3, 14517.

https://doi.org/10.1039/C5TA01879J

Khopkar S., Shankarling G. Dyes and Pigments 2019, 170, 107645.

https://doi.org/10.1016/j.dyepig.2019.107645

Qin C., Wong W.-Y., Han L. Chem. Asian. J. 2013, 8, 1706-1719.

https://doi.org/10.1002/asia.201300185

Jamalullail N., Mohamad I.S., Norizan M.N., Baharum N.A. IEEE 15th Student Conference on Research and Development (SCOReD) 2017, 344-349.

Pamain A., Pogrebnaya T., King'ondu C.K. Res. J. Eng. Appl. Sci. 2014, 3(5), 332-336.

Liu Q., Gao N., Liu D., Liu J., Li Y. Appl. Sci. 2018, 8, 1697.

https://doi.org/10.3390/app8091697

Selopal G.S., Wu H.-P., Lu J., Chang Y.-C., Wang M., Vomiero A., Concina I., Diau E.W.-G. Scientific Reports 2016, 6, 18756.

https://doi.org/10.1038/srep18756

Tsao H.N., T. Moehl C.Yi, Yum J.H., Zakeeruddin S.M., Nazeeruddin M.K., Grätzel M., ChemSusChem 2011, 4, 591-594 DOI: 10.1002/cssc.201100120

Angaridis P., Lazarides T., Coutsolelos A.C. Polyhedron 2014, 82, 19-32.

https://doi.org/10.1016/j.poly.2014.04.039

Ladomenou K., Kitsopoulos T.N., Sharma G.D., Coutsolelos A.G. RSC Adv. 2014, 4, 21379-21404.

https://doi.org/10.1039/C4RA00985A

Obraztsov I., Kutner W., D'Souza F. Sol. RRL 2017, 1, 1600002.

https://doi.org/10.1002/solr.201600002

Zhang L., Cole J.M. ACS Appl. Mater. Interfaces 2015, 7(6), 3427-3455.

https://doi.org/10.1021/am507334m

Daphnomili D., Landrou G., Singh S.P., Thomas A., Yesudas K., Bhanuprakash K., Sharma G.D., Coutsolelos A.G. RSC Adv. 2012, 2, 12899-12908.

https://doi.org/10.1039/c2ra22129b

Lu J., Xu X., Li Z., Cao K., Cui J., Zhang Y., Shen Y., Li Y., Zhu J., Dai S., Chen W., Cheng Y., Wang M. Chem. Asian. J. 2013, 8, 956-962.

https://doi.org/10.1002/asia.201201136

Mai C.-L., Moeh T., Hsieh C.-H., Decoppet J.-D., Zakeeruddin S.M., Grätzel M., Yeh C.-Y. ACS Appl. Mater. Interfaces 2015, 7(27), 14975-14982.

https://doi.org/10.1021/acsami.5b03783

Brennan B.J., Portolés M.J.L., Liddell P.A., Moore T.A., Moore A.L., Gust D. Phys. Chem. Chem. Phys. 2013, 15, 16605-16614.

https://doi.org/10.1039/c3cp52156g

Odobel F., Blart E., Lagrée M., Villieras M., Boujtita H., El Murr N., Caramoric S., Bignozzi C.A. J. Mater. Chem. 2003, 13, 502-510.

https://doi.org/10.1039/b210674d

López-Duarte I., Wang M., Humphry-Baker R., Ince M., Martínez-Díaz M.V., Nazeeruddin M.K., Torres T., Grätzel M. Angew. Chem. Int. Ed. 2012, 51, 1895-1898.

https://doi.org/10.1002/anie.201105950

He H., Gurunga A., Si L. Chem. Commun. 2012, 48, 5910-5912.

https://doi.org/10.1039/c2cc31440a

Ma T., Inoue K., Noma H., Yao K., Abe E. J. Photochem. Photobiol., A: Chemistry 2002, 152, 207-212.

https://doi.org/10.1016/S1010-6030(02)00025-4

Gou F., Jiang X., Li B., Jing H.-W., Zhu Z. ACS Appl. Mater. Interfaces 2013, 5(23), 12631-12637.

https://doi.org/10.1021/am403987b

Gou F., Jiang X., Fang R., Jing H., Zhu Z. ACS Appl. Mater. Interfaces 2014, 6, 6697-6703.

https://doi.org/10.1021/am500391w

Zhang N., Zhang B., Yan J., Xue X., Peng X., Li Y., Yang Y., Ju C., Fan C., Feng Y. Renewable Energy 2015, 77, 579-585.

https://doi.org/10.1016/j.renene.2014.12.066

Keawin T., Tarsang R., Sirithip K., Prachumrak N., Sudyoadsuk T., Namuangruk S., Roncali J., Kungwan N., Promarak V., Jungsuttiwong S. Dyes and Pigments 2017, 136, 697-706.

https://doi.org/10.1016/j.dyepig.2016.09.035

Ishida M., Park S.W., Hwang D., Koo Y.B., Sessler J.L., Kim D.Y., Kim D. J. Phys. Chem., C 2011, 115, 19343-19354.

https://doi.org/10.1021/jp202307b

Matsuzaki H., Murakami T.N., Masaki N., Furube A., Kimura M., Mori S. J. Phys. Chem., C 2014, 118, 17205-17212.

https://doi.org/10.1021/jp500798c

Si L., He H. J. Phys. Chem., A 2014, 118(19), 3410-3418.

https://doi.org/10.1021/jp412609k

Imahori H., Hayashi S., Hayashi H., Oguro A., Eu S., Umeyama T., Matano Y. J. Phys. Chem., C 2009, 113, 18406-18413.

https://doi.org/10.1021/jp907288h

Kroeze J.E., Hirata N., Koops S., Nazeeruddin Md.K., Schmidt-Mende L., Grätzel M., Durrant J.R. J. Am. Chem. Soc. 2006, 128(50), 16376-16383.

https://doi.org/10.1021/ja065653f

Zhang L., Cole J.M. J. Mater. Chem., A 2017, 5, 19541-19559.

https://doi.org/10.1039/C7TA05632J

Xue X., Zhang W., Zhang N., Ju C., Peng X., Yang Y., Liang Y., Feng Y., Zhang B. RSC Adv. 2014, 4, 8894-8900.

https://doi.org/10.1039/c3ra46212a

Chen J., Ko S., Liu L., Sheng Y., Han H., Li X. New J. Chem. 2015, 39, 3736-3746.

https://doi.org/10.1039/C4NJ02263G

Lu F., Zhang J., Zhou Y., Zhao Y., Zhang B., Feng Y. Dyes and Pigments 2016, 125, 116-123.

https://doi.org/10.1016/j.dyepig.2015.10.010

Magnano G., Marinotto D., Cipolla M.P., Trifiletti V., Listorti A., Mussini P.R., Di Carlo G., Tessore F., Manca M., Orbelli Biroli A., Pizzotti M. Phys. Chem. Chem. Phys. 2016, 18, 9577-9585.

https://doi.org/10.1039/C6CP00129G

Higashino T., Kawamoto K., Sugiura K., Fujimori Y., Tsuji Y., Kurotobi K., Ito S., Imahori H. ACS Appl. Mater. Interfaces 2016, 8(24), 15379-15390.

https://doi.org/10.1021/acsami.6b03806

Ananthakumar S., Balaji D., Kumar J.R., Babu S.M. SN Appl. Sci. 2019, 1, 186.

https://doi.org/10.1007/s42452-018-0054-3

Bessho T., Zakeeruddin S.M., Yeh C.-Y., Diau E.W.-G., Grätzel M. Angew. Chem. Int. Ed. 2010, 49, 6646-6649.

https://doi.org/10.1002/anie.201002118

Michaels H., Rinderle M., Freitag R., Benesperi I., Edvinsson T., Socher R., Gagliardi A., Freitag M. Chem. Sci. 2020, 11, 2895-2906.

https://doi.org/10.1039/C9SC06145B

Truta L.A.A.N.A., Moreira F.T.C., Sales M.G.F. Biosens. Bioelectron. 2018, 107, 94-102.

https://doi.org/10.1016/j.bios.2018.02.011

Guo W., Xue X., Wang S., Lin C., Wang Z.L. Nano Lett. 2012, 12, 2520-2523.

https://doi.org/10.1021/nl3007159

Pu X., Song W., Liu M., Sun C., Du C., Jiang C., Huang X., Zou D., Hu W., Wang Z.L. Adv. Energy Mater. 2016, 6, 1601048.

https://doi.org/10.1002/aenm.201601048

Yun S., Qin Y., Uhl A.R., Vlachopoulos N., Yin M., Li D., Han X., Hagfeldt A. Energy Environ. Sci. 2018, 11, 476-526.

https://doi.org/10.1039/C7EE03165C

Honda K, Fujishima A. Nature 1972, 238, 37-38.

https://doi.org/10.1038/238037a0

Watanabe M. Sci. Technol. Adv. Mater. 2017, 18(1), 705-723.

https://doi.org/10.1080/14686996.2017.1375376

Youngblood W.J., Lee S.-H.A., Maeda K., Mallouk T.E. Acc. Chem. Res. 2009, 42(12), 1966-1973.

https://doi.org/10.1021/ar9002398

Gan J., Lu X., Tong Y. Nanoscale 2014, 6, 7142-7164.

https://doi.org/10.1039/c4nr01181c

Abe R. J. Photochem. Photobiol., C: Photochem. Rev. 2010, 11, 179-209.

https://doi.org/10.1016/j.jphotochemrev.2011.02.003

Yun S., Vlachopoulos N., Qurashi A., Ahmad S., Hagfeldt A. Chem. Soc. Rev. 2019, 48, 3705-3722.

https://doi.org/10.1039/C8CS00987B

Swierk J.R., Mallouk T.E. Chem. Soc. Rev. 2013, 42, 2357-2387.

https://doi.org/10.1039/C2CS35246J

Swierk J.R., Méndez-Hernádez D.D., McCool N.S., Liddell P., Terazono Y., Pahk I., Tomlin J.J., Oster N.V., Moore T.A., Moore A.L., Gust D., Mallouk T.E. Proc. Nat. Acad. Sci. 2015, 112(6), 1681-1686.

https://doi.org/10.1073/pnas.1414901112

Sherman B.D., Bergkamp J.J., Brown C.L., Moore A.L., Gust D., Moore T.A. Energy Environ Sci. 2016, 9, 1812-1817.

https://doi.org/10.1039/C6EE00258G

Kang S.H., Jeong M.J., Eom Y.K., Choi I.T., Kwon S.M., Yoo Y., Kim J., Kwon J., Park J.H., Kim H.K. Adv. Energy Mater. 2017, 7, 1602117.

https://doi.org/10.1002/aenm.201602117

Melville O.A., Lessard B.H., Bender T.P. ACS Appl. Mater. Interfaces 2015, 7, 13105−13118.

https://doi.org/10.1021/acsami.5b01718

de la Torre G., Bottari G., Torres T. Adv. Energy Mater. 2017, 7(10), 1601700.

https://doi.org/10.1002/aenm.201601700

Brinkmann H., Kelting C., Makarov S., Tsaryova O., Schnurpfeil G., Wöhrle D., Schlettwein D. Phys. Status Solidi (A) Appl. Mater. Sci. 2008, 205(3), 409−420.

https://doi.org/10.1002/pssa.200723391

Stuzhin P.A. Fluorinated Phthalocyanines and Their Analogues In: Fluorine in Heterocyclic Chemistry. Vol. 1. 5-Membered Heterocycles and Macrocycles. (Nenajdenko V.G., Ed.). Heidelberg: Springer, 2014. p. 621−681.

https://doi.org/10.1007/978-3-319-04346-3_15

Stuzhin P.A., Ercolani C. Porphyrazines with Annulated Heterocycles. In: Porphyrin Handbook. Vol. 15. (Kadish K.M., Smith K.M., Guilard R., Ed.) Amsterdam: Elsevier Science, 2003. p. 263−364.

https://doi.org/10.1016/B978-0-08-092389-5.50011-0

Donzello M.P., Ercolani C., Novakova V., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2016, 309, 107−179.

https://doi.org/10.1016/j.ccr.2015.09.006

Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1−73.

https://doi.org/10.1016/j.ccr.2018.01.015

Lonchakov A.V., Rakitin O.A., Gritsan N.P., Zibarev A.V. Molecules 2013, 18(8), 9850−9900.

https://doi.org/10.3390/molecules18089850

Rakitin O.A. Tetrahedron Lett. 2020, 61(34), 152230.

https://doi.org/10.1016/j.tetlet.2020.152230

Konstantinova L.S., Knyazeva E.A., Rakitin O.A. Rev. Org. Preparations and Procedures Int. 2014, 46(6), 475−544.

https://doi.org/10.1080/00304948.2014.963454

Stuzhin P.A., Bauer E.M., Ercolani C. Inorg. Chem. 1998, 37(7), 1533−1539.

https://doi.org/10.1021/ic9609259

Bauer E.M., Ercolani C., Galli P., Popkova I.A., Stuzhin P.A. J. Porphyrins Phthalocyanines 1999, 3(5), 371−379.

https://doi.org/10.1002/(SICI)1099-1409(199906)3:5<371::AID-JPP140>3.0.CO;2-F

Donzello M.P., Ercolani C., Stuzhin P.A. Coord. Chem. Rev. 2006, 250(11-12), 1530-1561.

https://doi.org/10.1016/j.ccr.2006.02.009

Cozzolino A., Yang Q., Vargas-Baca I. Cryst. Growth Des. 2010, 10, 4959-4964.

https://doi.org/10.1021/cg101060s

Stuzhin P.A., Mikhailov M.S., Yurina E.S., Bazanov M.I., Koifman O.I., Pakhomov G.L., Travkin V.V., Sinelshchikova A.A. Chem. Comm. 2012, 48(81), 10135-10137.

https://doi.org/10.1039/c2cc35580a

Otlyotov A.A., Ryzhov I.V., Kuzmin I.A., Zhabanov Y.A., Mikhailov M.S., Stuzhin P.A. Int. J. Molec. Sci. 2020, 21(8), 2923.

https://doi.org/10.3390/ijms21082923

Stuzhin P.A., Ivanova S.S., Hamdoush M., Kirakosyan G.A., Kiselev A., Popov A., Sliznev V., Ercolani C. Dalton Trans. 2019, 48(37), 14049-14061.

https://doi.org/10.1039/C9DT02345C

Bauer E.M., Cardarilli D., Ercolani C., Stuzhin P.A., Russo U. Inorg. Chem. 1999, 38(26), 6114-6120.

https://doi.org/10.1021/ic990855g

Pia Donzello M., Viola E., Giustini M., Ercolani C., Monacelli F. Dalton Trans. 2012, 41(20), 6112-6121.

https://doi.org/10.1039/c2dt12381a

Angeloni S., Bauer E.M., Ercolani C., Popkova I.A., Stuzhin P.A. J. Porphyrins Phthalocyanines 2001, 5(12), 881-888.

https://doi.org/10.1002/jpp.558

Tarakanova E.N., Hamdoush M., Eroshin A.V., Ryzhov I.V., Zhabanov Y.A., Stuzhin P.A. Polyhedron 2021, 193, 114877.

https://doi.org/10.1016/j.poly.2020.114877

Donzello M.P., Agostinetto R., Ivanova S.S., Fujimori M., Suzuki Y., Yoshikawa H., Shen J., Awaga K., Ercolani C., Kadish K.M., Stuzhin P.A. Inorg. Chem. 2005, 44(23), 8539-8551.

https://doi.org/10.1021/ic050866b

Miyoshi Y., Takahashi K., Fujimoto T., Yoshikawa H., Matsushita M.M., Ouchi Y., Kepenekian M., Robert V., Donzello M.P., Ercolani C., Awaga K. Inorg. Chem. 2012, 51(1), 456-462.

https://doi.org/10.1021/ic201880g

Onay H., Yerli Y., Öztürk R. Transition Met. Chem. 2009, 34(2), 163-166.

https://doi.org/10.1007/s11243-008-9172-x

Hamdoush M., Ivanova S.S., Pakhomov G.L., Stuzhin P.A. Macroheterocycles 2016, 9(3), 230-233.

https://doi.org/10.6060/mhc160424s

Hamdoush M., Nikitin K., Skvortsov I., Somov N., Zhabanov Yu., Stuzhin P.A. Dyes and Pigments 2019, 170, 107584.

https://doi.org/10.1016/j.dyepig.2019.107584

Kudrik E.V., Bauer E.M., Ercolani C., Chiesi-Villa A., Rizzoli C., Gaberkorn A., Stuzhin P.A. Mendeleev Commun. 2001, 11(2), 45-47.

https://doi.org/10.1070/MC2001v011n02ABEH001372

Donzello M.P., Ercolani C., Gaberkorn A.A., Kudrik E.V., Meneghetti M., Marcolongo G., Rizzoli C., Stuzhin P.A. Chem. Eur. J. 2003, 9(17), 4009-4024.

https://doi.org/10.1002/chem.200304929

Gaberkorn A.A., Donzello M.-P., Stuzhin P.A. Russ. J. Org. Chem. 2006, 42(6), 929-935.

https://doi.org/10.1134/S1070428006060200

Stuzhin P.A., Pimkov I.V., Ul-Haq A., Ivanova S.S., Popkova I.A., Volkovich D.I., Kuzmitskii V.A., Donzello M.-P. Russ. J. Org. Chem. 2007, 43(12), 1854-1863.

https://doi.org/10.1134/S1070428007120202

Svec J., Zimcik P., Novakova L., Rakitin O.A., Amelichev S., Stuzhin P.A., Novakova V. Eur. J. Org. Chem. 2015, 3, 596-604.

https://doi.org/10.1002/ejoc.201403329

Stuzhin P.A. Synthesis, Structure and Physico-chemical properties of Azaporphyrins and Porphyrazines. Diss. doc. chem sci. Ivanovo: ISUCT, 2004.

Volkovich D.I., Kuzmitsky V.A., Stuzhin P.A. J. Appl. Spectrosc. 2008, 75(5), 621-636.

https://doi.org/10.1007/s10812-008-9113-7

Cai X., Zhang Y., Zhang X., Jiang J. J. Molec. Struc.: THEOCHEM 2007, 812(1-3), 63-70.

https://doi.org/10.1016/j.theochem.2007.02.010

Donzello M.-P., Ercolani C., Kadish K.M., Ricciardi G., Rosa A., Stuzhin P.A. Inorg. Chem. 2007, 46(10), 4145-4157.

https://doi.org/10.1021/ic070038d

Tverdova N.V., Giricheva N.I., Savelyev D.S., Mikhailov M.S., Vogt N., Koifman O.I., Stuzhin P.A., Girichev G.V. Macroheterocycles 2017, 10(1), 27-30.

https://doi.org/10.6060/mhc170399g

Zhabanov Y.A., Sliznev V.V., Ryzhov I.V., Stuzhin P.A. J. Porphyrins Phthalocyanines 2020, 24(9), 1146-1154.

https://doi.org/10.1142/S1088424620500285

Zhabanov Yu.A., Tverdova N.V., Giricheva N.I., Girichev G.V., Stuzhin P.A. J. Porphyrins Phthalocyanines 2017, 21(4-6), 439-452.

https://doi.org/10.1142/S1088424617500444

Fujimori M., Suzuki Y., Yoshikawa H., Awaga K. Angew. Chem. Int. Ed. 2003, 42(47), 5863-5865.

https://doi.org/10.1002/anie.200352571

Suzuki Y., Fujimori M., Yoshikawa H., Awaga K. Chem. Eur. J. 2004, 10(20), 5158-5164.

https://doi.org/10.1002/chem.200400394

Donzello M.P., Fujimori M., Miyoshi Y., Yoshikawa H., Viola E., Awaga K., Ercolani C. J. Porphyrins Phthalocyanines 2010, 14(4), 343-348.

https://doi.org/10.1142/S1088424610002082

Miyoshi Y., Kubo M., Fujinawa T., Suzuki Y., Yoshikawa H., Awaga K. Angew. Chem. Int. Ed. 2007, 46(29), 5532-5536.

https://doi.org/10.1002/anie.200700702

Eguchi K., Heutz S., Awaga K. J. Porphyrins Phthalocyanines 2017, 21(4-6), 322-326.

https://doi.org/10.1142/S1088424617500171

Eguchi K., Nanjo C., Awaga K., Tseng H.-H., Robaschik P., Heutz S. Phys. Chem. Chem. Phys. 2016, 18(26), 17360-17365.

https://doi.org/10.1039/C6CP01932C

Stuzhin P.A., Mikhailov M.S., Travkin V.V., Gudkov E.Y., Pakhomov G.L. Macroheterocycles 2012, 5(2), 162-165.

https://doi.org/10.6060/mhc2012.120573p

Stuzhin P.A., Mikhailov M.S., Travkin V.V., Pakhomov G.L. Zinc(II) Tetra(1,2,5-thiadiazolo)porphyrazine Complex in Thin Film Photovoltaic Structures. In: Recent Developments in Coordination, Bioinorganic, and Applied Inorganic Chemistry. Vol. 11. (Melnik M., Segl'a P., Tatarko M., Eds.) Bratislava: Press of Slovak University of Technology, 2013. p. 318-323. ISBN 978-80-227-3918-4.

https://doi.org/10.13140/2.1.2341.3761

Hou J., Wang Y., Eguchi K., Nanjo C., Takaoka T., Sainoo Y., Awaga K., Komeda T. Appl. Surface Sci. 2018, 440, 16-19.

https://doi.org/10.1016/j.apsusc.2018.01.001

Wang Y., Hou J., Eguchi K., Nanjo C., Takaoka T., Sainoo Y., Awaga K., Komeda T. ACS Omega 2020, 5(12), 6676-6683.

https://doi.org/10.1021/acsomega.9b04453

Miyoshi Y., Fujimoto T., Yoshikawa H., Matsushita M.M., Awaga K., Yamada T., Ito H. Org. Electron. 2011, 12(2), 239-243.

https://doi.org/10.1016/j.orgel.2010.11.005

Fujimoto T., Miyoshi Y., Matsushita M.M., Awaga K. Chem. Commun. 2011, 47(20), 5837-5839.

https://doi.org/10.1039/c0cc05198e

Nanjo C., Fujimoto T., Matsushita M.M., Awaga K. J. Phys. Chem., C 2014, 118(26), 14142-14149.

https://doi.org/10.1021/jp502056s

Koptyaev A.I., Khamdoush M., Fedoseev A.N., Travkin V.V., Pakhomov G.L. Macroheterocycles 2018, 11(4), 412-417.

https://doi.org/10.6060/mhc181114p

Pakhomov G.L., Travkin V.V., Hamdoush M., Zhabanov Yu.A., Stuzhin P.A. Macroheterocycles 2017, 10(4-5), 548-551.

https://doi.org/10.6060/mhc171038s

Park J.M., Lee J.H., Jang W.-D. Coord. Chem. Rev. 2020, 407, 213157-213185.

https://doi.org/10.1016/j.ccr.2019.213157

Konovalova N.V., Evstigneeva R.P., Luzgina V.N. Russ. Chem. Rev. 2001, 70, 939-970.

https://doi.org/10.1070/RC2001v070n11ABEH000682

Borovkov V.V., Mamardashvili N.Zh., Inoue Y. Russ. Chem. Rev. 2006, 75, 737-748.

https://doi.org/10.1070/RC2006v075n08ABEH003630

Kruk N.N. J. Appl. Spectrosc. 2008, 75, 461-482.

https://doi.org/10.1007/s10812-008-9088-4

Flamigni L., Gryko D.T. Chem. Soc. Rev. 2009, 38, 1635-1646.

https://doi.org/10.1039/b805230c

De Souza F., Chitta R., Ohkubo K. et al. J. Am. Chem. Soc. 2008, 130, 14263-14272.

https://doi.org/10.1021/ja804665y

Adeyemi O.O., Malinovskii V.L., Biner S.M. et al. Chem. Commun. 2012, 48, 9589-9591.

https://doi.org/10.1039/c2cc34183b

Andrianova L.G., Lomova T.N., Berezin B.D. Zhurn. Neorgan. Khimii 1984, 29, 1697-1701. (in Russ.).

Miyazaki Y., Satake A., Kobuke Y. J. Mol. Cat. A: Chem. 2008, 283, 129-139.

https://doi.org/10.1016/j.molcata.2007.12.016

Ni Y., Marchal G., Yu G. et al. Acad. Radiol. 1995, 2, 687-699.

https://doi.org/10.1016/S1076-6332(05)80437-4

He H., Zhu X., Hou A. Dalton Trans. 2004, 23, 4064-4073.

https://doi.org/10.1039/B410600H

He H., Wong W.-K., Li K.-F., Cheah K.-W. Synth. Met. 2004, 143, 81-87.

https://doi.org/10.1016/j.synthmet.2003.10.011

He H., Sykes A.G., May P.S., He G. Dalton Trans. 2009, 36, 7454-7461.

https://doi.org/10.1039/B909243A

Foley T., Harrison B., Knefely A. et al. Inorg. Chem. 2003, 42, 5023-5032.

https://doi.org/10.1021/ic034217g

Xin Z., Wei L., Ming J., Fa L. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2000, 30, 1747-1758.

https://doi.org/10.1080/00945710009351866

Li D.-M., Zhao Z.-X., Liu S.-Q. et al. Synth. Commun. 2000, 30, 4017-4026.

https://doi.org/10.1080/00397910008087017

Li D.-M., Zhao Z.-X., Sun H.-R. et al. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2000, 30, 1899-1915.

https://doi.org/10.1080/00945710009351877

Zhao Z., Liu G. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2002, 32, 465-473.

https://doi.org/10.1081/SIM-120003789

Wong W.-K., Hou A., Guo J. et al. J. Chem. Soc., Dalton Trans. 2001, 20, 3092-3098.

https://doi.org/10.1039/b104993n

Jiang F.-L., Wong W.-K., Zhu X.-J. et al. Eur. J. Inorg. Chem. 2007, 21, 3365-3374.

https://doi.org/10.1002/ejic.200700153

Zhu X.-J., Zhang T., Zhao S. et al. Eur. J. Inorg. Chem. 2011, 22, 3314-3320.

https://doi.org/10.1002/ejic.201100025

Hindre F., Plouzennec M., Certaines J. et al. J. Magn. Reson. Imaging 1993, 3, 59-65.

https://doi.org/10.1002/jmri.1880030111

Li G., Slansky A., Dobhal M.P., Goswami L.N. Bioconjugate Chem. 2005, 16, 32-42.

https://doi.org/10.1021/bc049807x

Nah M., Oh J.B., Kim H.K. et al. J. Phys. Chem. A. 2007, 111, 6157-6164.

https://doi.org/10.1021/jp0688512

Beeby A., Dickins R., Fitzgerald S. et al. Chem. Commun. 2000, 13, 1183-1184.

https://doi.org/10.1039/b002452j

Kang T.S., Harrison B.S., Foley T.J. et al. Adv. Mat. 2003, 15, 1093-1097.

https://doi.org/10.1002/adma.200304692

Guo L., Yan B. Inorg. Chem. Commun. 2011, 14, 1833-1837.

https://doi.org/10.1016/j.inoche.2011.08.020

Zhu X., Wong W.-K., Wong W.-Y., Yang X. Eur. J. Inorg. Chem. 2011, 4651-4674.

https://doi.org/10.1002/ejic.201100481

Mironov А.F. Russ. Chem. Rev. 2013, 82, 333-351.

https://doi.org/10.1070/RC2013v082n04ABEH004300

Shuhui B., Hu J., Wang Q., Liu X., Zhen Z. Photochem. Photobiol. Sci. 2008, 7, 474-479.

https://doi.org/10.1039/b715809b

Tolbin A., Pushkarev V., Tomilova L. Mendeleev Commun. 2008, 18, 94-95.

https://doi.org/10.1016/j.mencom.2008.03.015

Kasuga K., Tsutsui M. Coord. Chem. Rev. 1980, 32, 67-95.

https://doi.org/10.1016/S0010-8545(00)80370-7

Smola S.S., Snurnikova O.V., Fadeyev E.N. et al. Macroheterocycles 2012, 5, 343-349.

https://doi.org/10.6060/mhc2012.121193r

Semenishyn N.N., Smola S.S., Rusakova N.V. et al. Macroheterocycles 2017, 10, 268-272.

https://doi.org/10.6060/mhc170621r

Semenishyn N.N., Smola S.S., Rusakova N.V. et al. Macroheterocycles 2018, 11, 262-268.

https://doi.org/10.6060/mhc180691r

Gross Z., Galili N., Saltsman I. Angew. Chem. Int. Ed. 1999, 38, 1427-1429.

https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1427::AID-ANIE1427>3.0.CO;2-1

Semenishyn N., Gross Z. Dalton Trans. 2013, 42, 3775-3778.

https://doi.org/10.1039/c2dt32842a

Buckley H.L., Anstey M.R., Gryko D.T., Arnold J. Chem. Commun. 2013, 49, 3104-3106.

https://doi.org/10.1039/c3cc38806a

Semenishyn N.N., Rusakova N.V. Macroheterocycles 2016, 9, 163-168.

https://doi.org/10.6060/mhc160425r

Day N.U., Wamser C.C., Walter M.G. Polym. Int. 2015, 64, 833-857.

https://doi.org/10.1002/pi.4908

Asif Mahmood et al. J. Mater. Chem. A. 2018, 6, 16769-16797.

https://doi.org/10.1039/C8TA06392C

Shirakawa H. et al. J. Chem. Soc., Chem. Commun. 1977, 16, 578-580.

https://doi.org/10.1039/c39770000578

Mac Diarmid A.G. Synthetic Metals 2001, 125(1), 11-22.

https://doi.org/10.1016/S0379-6779(01)00508-2

Heeger A.J. Rev. Modern Phys. 2001, 73(3), 681-700.

https://doi.org/10.1103/RevModPhys.73.681

Liu L., Yang D., Tian H., Ji Y. Optics Commun. 2012, 285, 171–177.

https://doi.org/10.1016/j.optcom.2011.08.066

Light Scattering in Solids I. Introductory Concepts (Cardona M., Ed.). Springer Berlin Heidelberg 1983. XV 366 p.

https://doi.org/10.1007/3-540-11913-2

Troger F. et al. Springer Berlin Heidelberg 2012, 161-251.

Bower D.I. Infrared Dichroism, Polarized fluorescence and Raman spectroscopy. In: Structure and Properties of Oriented Polymers (Ward I.M., Ed.). Springer Netherlands, 1997. p. 181-233.

https://doi.org/10.1007/978-94-011-5844-2

Sosorev A.Yu., Trukhanov V.A., Maslennikov D.R. et al. ACS Appl. Mater. Interfaces 2020, 12(8), 9507-9519.

https://doi.org/10.1021/acsami.9b20295

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I., Koifman O.I. Mendeleev Commun. 2019, 29, 309-311.

https://doi.org/10.1016/j.mencom.2019.05.023

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Adv. Colloid Interface Sci. 2018, 253, 23-34.

https://doi.org/10.1016/j.cis.2018.02.001

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2018, 292, 256-267.

https://doi.org/10.1016/j.electacta.2018.09.127

Chulovskaya S.A., Kuzmin S.M., Parfenyuk V.I. Macroheterocycles 2015, 8, 259-265.

https://doi.org/10.6060/mhc150662k

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. J. Electroanal. Chem. 2016, 772, 80-88.

https://doi.org/10.1016/j.jelechem.2016.04.024

Kuzmin S.M., Chulovskaya S.A., Tesakova M.V., Semeikin A.S., Parfenyuk V.I. Macroheterocycles 2014, 7, 218-224.

https://doi.org/10.6060/mhc140511k

Kuzmin S.M., Chulovskaya S. A., Parfenyuk V.I. Macroheterocycles 2013, 6, 334-339.

https://doi.org/10.6060/mhc131057k

Tesakova M.V., Semeikin A.S., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2016, 20, 793-803.

https://doi.org/10.1142/S1088424616500930

Kuz'min S.M., Chulovskaya S.A., Parfenyuk V.I. Russ. J. Electrochem. 2014, 50(5), 429-437.

https://doi.org/10.1134/S1023193514050073

Lunt R.R., Benziger J.B., Forrest S.R. Adv. Mater. 2010, 22, 1233-1236.

https://doi.org/10.1002/adma.200902827

Mikhnenko O.V., Lin J., Shu Y., Anthony J.R., Blom P.W.M., Nguyen T.-Q. et al. Phys. Chem. Chem. Phys. 2012, 14, 14196-14201.

https://doi.org/10.1039/c2cp41359k

Menke S.M., Holmes R.J. Energy Environ Sci. 2014, 7, 499-512.

https://doi.org/10.1039/C3EE42444H

Walter M.G., Wamser C.C. J. Phys. Chem. C. 2010, 114, 7563-7574.

https://doi.org/10.1021/jp910016h

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2020, 342, 136064.

https://doi.org/10.1016/j.electacta.2020.136064

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I., Koifman O.I. Mendeleev Commun. 2020. DOI 10.1016/j.mencom.2020.11.030.

https://doi.org/10.1016/j.mencom.2020.11.030

Fateeva A., Devautour-Vinot S., Heymans N., Devic T., Grenèche J.-M., Wuttke S., Miller S., Lago A., Serre C., Weireld G.D., Maurin G., Vimont A., Férey G. Chem. Mater. 2011, 23, 4641-4651.

https://doi.org/10.1021/cm2025747

Fateeva A., Chater P.A., Ireland C.P., Tahir A.A., Khimyak Y.Z., Wiper P.V., Darwent J.R., Rosseinsky M.J. Angew. Chem. Int. 2012, 51, 7440-7444.

https://doi.org/10.1002/anie.201202471

Yang X.L., Xie M.H., Zou C., He Y., Chen B., O'Keeffe M. et al. J. Am. Chem. Soc. 2012, 13, 10638-10645.

https://doi.org/10.1021/ja303728c

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2015, 19, 1053-1062.

https://doi.org/10.1142/S1088424615500807

Parfenyuk V.I., Tesakova M.V., Chulovskaya S.A., Kuzmin S.M. Macroheterocycles 2019, 12, 154-164.

https://doi.org/10.6060/mhc190232p

Tesakova M.V., Koifman O.I., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2018, 22, 632-639.

https://doi.org/10.1142/S1088424618500864

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Mater. Chem. Phys. 2020, 241, 122394.

https://doi.org/10.1016/j.matchemphys.2019.122394

Popov I.A., Kuzmin S.M., Chulovskaya S.A., Semeikin A.S., Parfenyuk V.I. Macroheterocycles 2012, 5(2), 131-135.

https://doi.org/10.6060/mhc2012.120254k

Kuzmin S.M., Chulovskaya S.A., Koifman O.I., Parfenyuk V.I. Electrochem. Commun. 2017, 83, 28-32.

https://doi.org/10.1016/j.elecom.2017.08.016

Tesakova M.V., Lutovac M., Parfenyuk V.I. J. Porphyrins Phthalocyanines 2018, 22, 1047-1053.

https://doi.org/10.1142/S108842461850102X

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochimica Acta 2020, 342, 136064.

https://doi.org/10.1016/j.electacta.2020.136064

Filimonova Yu. A., Chulovskaya S. A., Kuzmin S. M., Parfenyuk V. I. Electroplating and surface treatment. 2020, 28, 21-28 [in Russian].

Masa J., Ozoemena K., Schuhmann W., Zagal J.H. J. Porphyrins Phthalocyanines 2012, 16, 762-784.

https://doi.org/10.1142/S1088424612300091

Tryk D.A., Cabrera C.R., Fujishima A., Spataru N. In: The Electrochemical Society Proceedings (Prakash J., Chu D., Scherson D., Enayetullah M., Tae Bae I., Eds.) Pennington, New Jersey, 2005. p. 45.

Taylor R.J., Humffray A.A. J. Electroanal. Chem. Interfacial Electrochem. 1975, 64, 63-84.

https://doi.org/10.1016/S0022-0728(75)80278-6

Qin H., Xu L., Zhong D. J. Phys. Chem. C 2020, 124, 5167-5173.

https://doi.org/10.1021/acs.jpcc.9b10664

Hu Q., Rezaee E., Li M., Chen Q., Cao Y., Mayukh M., McGrath D.V., Xu Z.X. ACS Appl. Mater. Interfaces 2019, 11, 36535-36543.

https://doi.org/10.1021/acsami.9b09490

Song C., Li Y., Gao C., Zhang H., Chuai Y., Song D. Mater. Lett. 2020, 270, 127666.

https://doi.org/10.1016/j.matlet.2020.127666

Boileau N.T., Melville O.A., Mirka B., Cranston R., Lessard B.H. RSC Adv. 2019, 9, 2133-2142.

https://doi.org/10.1039/C8RA08829B

Lo P.C., Rodríguez-Morgade M.S., Pandey R.K., Ng D., Torres T., Dumoulin F. Chem. Soc. Rev. 2020, 49, 1041-1056.

https://doi.org/10.1039/C9CS00129H

Valli F., García Vior M.C., Roguin L.P., Marino J. Free Radic. Biol. Med. 2020, 152, 743-754.

https://doi.org/10.1016/j.freeradbiomed.2020.01.018

Su H.C., Tran T.T., Bosze W., Myung N.V. Sens. Actuators Reports 2020, 2, 100011.

https://doi.org/10.1016/j.snr.2020.100011

Wang L., Wang L., Yang G., Xie Q., Zhong S., Su X., Hou Y., Zhang B. Langmuir 2020, 36, 4532-4539.

https://doi.org/10.1021/acs.langmuir.9b03636

Morlanés N., Almaksoud W., Rai R.K., Ould-Chikh S., Ali M.M., Vidjayacoumar B., Al-Sabban B.E., Albahily K., Basset J.M. Catal. Sci. Technol. 2020, 10, 844-852.

https://doi.org/10.1039/C9CY02326G

Neamtu M., Nadejde C., Brinza L., Dragos O., Gherghel D., Paul A. Sci. Rep. 2020, 10, 1-12.

https://doi.org/10.1038/s41598-020-61980-6

Thomas A.L. Phthalocyanine Research and Applications. CRC Press, 1990. 304 p.

Terao R., Nakazono T., Parent A.R., Sakai K. Chempluschem 2016, 81, 1064-1067.

https://doi.org/10.1002/cplu.201600263

Filippova A., Vashurin A., Znoyko S., Kuzmin I., Razumov M., Chernova A., Shaposhnikov G., Koifman O. J. Mol. Struct. 2017, 1149, 17-26.

https://doi.org/10.1016/j.molstruc.2017.07.086

Vashurin A., Filippova A., Znoyko S., Voronina A., Lefedova O., Kuzmin I., Maizlish V., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 983-996.

https://doi.org/10.1142/S1088424615500753

Vashurin A., Kuzmin I., Razumov M., Golubchikov O., Koifman O. Macroheterocycles 2018, 11, 11-20.

https://doi.org/10.6060/mhc180168v

Filippova A.A., Kerner A.A., Znoiko S.A., Tikhomirova T.V., Vashurin A.S. Russ. J. Inorg. Chem. 2020, 65, 247-254.

https://doi.org/10.1134/S0036023620020047

Voronina A.A., Filippova A.A., Znoiko S.A., Vashurin A.S., Maizlish V.E. Russ. J. Inorg. Chem. 2015, 60, 1407-1414.

https://doi.org/10.1134/S0036023615110236

Reid N., Barat R. Chem. Eng. Commun. 2016, 203, 714-723.

https://doi.org/10.1080/00986445.2015.1067802

Saka E.T., Çağlar Y. Catal. Lett. 2017, 147, 1471-1477.

https://doi.org/10.1007/s10562-017-2054-0

Dai D., Yang Z., Yao Y., Chen L., Jia G., Luo L. Catal. Sci. Technol. 2017, 7, 934-942.

https://doi.org/10.1039/C6CY02317G

Sun X., Wang L., Tan Z. Catal. Lett. 2015, 145, 1094-1102.

https://doi.org/10.1007/s10562-015-1500-0

Baturhan O.E., Sağlam M.B., Özkaya A.R. Synth. Met. 2020, 263, 116351.

https://doi.org/10.1016/j.synthmet.2020.116351

Chen B., Bu Y., Yang J., Nian W., Hao S. Chem. Eng. J. 2020, 399, 125675.

https://doi.org/10.1016/j.cej.2020.125675

Li L., Wu H., Chen H., Zhang J., Xu X., Wang S., Wang S., Sun H. Chemosphere 2020, 256, 127160.

https://doi.org/10.1016/j.chemosphere.2020.127160

Wang C., Shao N., Xu J., Zhang Z., Cai Z. J. Hazard. Mater. 2020, 388, 121751.

https://doi.org/10.1016/j.jhazmat.2019.121751

Gong J., Li D., Huang J., Ding L., Tong Y., Li K., Zhang C. Catal. Lett. 2014, 144, 487-497.

https://doi.org/10.1007/s10562-013-1178-0

Vashurin A., Kuzmin I., Mayzlish V., Razumov M., Golubchikov O., Koifman O. J. Serbian Chem. Soc. 2016, 81, 1025-1036.

https://doi.org/10.2298/JSC160105048V

Vashurin A., Maizlish V., Pukhovskaya S., Voronina A., Kuzmin I., Futerman N., Golubchikov O., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 573-581.

https://doi.org/10.1142/S1088424614501028

Tugba S.E., Tekintas K. J. Mol. Struct. 2020, 1215, 128189.

https://doi.org/10.1016/j.molstruc.2020.128189

Vashurin A., Erzunov D., Kazaryan K., Tonkova S., Tikhomirova T., Filippova A., Koifman O. Dyes and Pigments 2020, 174, 108018.

https://doi.org/10.1016/j.dyepig.2019.108018

Makarov S.G., Ketkov S.Y.,Wöhrle D. Chem. Commun. 2020, 56, 5653-5656.

https://doi.org/10.1039/D0CC01653E

Vashurin A., Marfin Y., Tarasyuk I., Kuzmin I., Znoyko S., Goncharenko A., Rumyantsev E. Appl. Organomet. Chem. 2018, 32, e4482.

https://doi.org/10.1002/aoc.4482

Vashurin A.S. Russ. Chem. Bull. 2016, 65, 2220-2228.

https://doi.org/10.1007/s11172-016-1572-z

Tripathi D., Negi H., Singh R.K., Singh U.P., Srivastava V.C. J. Coord. Chem. 2019, 72, 2982-2996.

https://doi.org/10.1080/00958972.2019.1683549

Yang Y., Li M., Ren Y., Li Y., Xia C. Int. J. Hydrogen Energy 2018, 43, 3797-3802.

https://doi.org/10.1016/j.ijhydene.2017.12.183

Thiruppathiraja T., Arokiyanathan A., Aazaad B., Silviya R., Lakshmipathi S. Int. J. Hydrogen Energy 2020, 45, 8540-8548.

https://doi.org/10.1016/j.ijhydene.2020.01.079

Guo S., Li D., Gao B., Li Y., Zhang H., Li Y., Duan Q. J. Coord. Chem. 2019, 72, 1146-1155.

https://doi.org/10.1080/00958972.2019.1578878

Huai M., Yin Z., Wei F., Wang G., Lu J., Zhuang L. Chem. Phys. Lett. 2020, 754, 137655.

https://doi.org/10.1016/j.cplett.2020.137655

Ma D.D., Han S.G., Cao C., Li X., Wu X.T., Zhu Q.L. Appl. Catal. B Environ. 2020, 264, 118530.

https://doi.org/10.1016/j.apcatb.2019.118530

Li K., Zhu J., Liu Q., Li Z., Zhao J. J. Electrochem. Soc. 2020, 167, 040506.

https://doi.org/10.1149/1945-7111/ab7184

Silva N., Castro-Castillo C., Oyarzún M., Ramírez S., Gutierrez-Ceron C., Marco J., Silva J., Zagal J. Electrochim. Acta 2019, 308, 295-306.

https://doi.org/10.1016/j.electacta.2019.04.005

Yan X., Xu X., Liu Q., Guo J., Kang L., Yao J. J. Power Sources 2018, 389, 260-266.

https://doi.org/10.1016/j.jpowsour.2018.03.042

Mahmiani Y., Sevim A., Gül A. J. Photochem. Photobiol. A Chem. 2016, 321, 24-32.

https://doi.org/10.1016/j.jphotochem.2015.12.015

Koç Keşir M., Dilber G., Sökmen M., Durmuş M. J. Sol-Gel Sci. Technol. 2020, 93, 687-694.

https://doi.org/10.1007/s10971-019-05109-w

Zhou Z., Chen A., Kong A., Fan X., Zhang X., Shan Y. J. Electrochem. Soc. 2018, 165, H658-H666.

https://doi.org/10.1149/2.1131810jes

Qian M., Ma J., Materials M. Trans. Tech. Publ. 2017, 748, 433-437.

https://doi.org/10.4028/www.scientific.net/KEM.748.433

Wang R., Liu Y., Zuo P., Zhang Z., Lei ., Liu Y. Environ. Sci. Pollut. Res. 2020, 27, 18831-18842.

https://doi.org/10.1007/s11356-020-08425-9

Huang Y., Yang Z., Yang S., Xu Y. J. Adv. Nanomater. 2017, 2, 146-153.

https://doi.org/10.1016/B978-0-12-849903-0.00008-7

Chauhan P., Yan N. RSC Adv. 2015, 5, 37517-37520.

https://doi.org/10.1039/C4RA16869K

Ziyadova T.M., Burmistrov V.A., Maizlish V.E., Koifman O.I. Russ. J. Phys. Chem A 2017, 91, 460-463.

https://doi.org/10.1134/S0036024417030323

Ziyadova T.M., Burmistrov V.A., Maizlish V.E., Koifman O.I. Kinet. Catal. 2016, 57, 313-318.

https://doi.org/10.1134/S0023158416030186

Mapukata S., Kobayashi N., Kimura M., Nyokong T. J. Photochem. Photobiol. A Chem. 2019, 379, 112-122.

https://doi.org/10.1016/j.jphotochem.2019.04.048

Zhu Z., Chen Y., Gu Y., Wu F., Lu W., Xu T., Chen W. Water Res. 2016, 93, 296-305.

https://doi.org/10.1016/j.watres.2016.02.035

Bridwell-Rabb J., Drennan C.L. Curr. Opin. Chem. Biol. 2017, 37, 63-70.

https://doi.org/10.1016/j.cbpa.2017.01.013

Giedyk M., Goliszewska K., Gryko D. Chem. Soc. Rev. 2015, 44, 3391-3404.

https://doi.org/10.1039/C5CS00165J

Zelder F. Chem. Commun. 2015, 51, 14004-14017.

https://doi.org/10.1039/C5CC04843E

Lexa D., Saveant J.-M. Acc. Chem. Res. 1983, 16, 235-243.

https://doi.org/10.1021/ar00091a001

Dereven'kov I.A., Hannibal L., Dürr M., Salnikov D.S., Bui Thi T.T., Makarov S.V., Koifman O.I., Ivanović-Burmazović I. J. Organomet. Chem. 2017, 839, 53-59.

https://doi.org/10.1016/j.jorganchem.2017.01.002

Dereven'kov I.A., Bui Thi T.T., Salnikov D.S., Makarov S.V. Russ. J. Phys. Chem. A 2016, 90, 596-600.

https://doi.org/10.1134/S0036024416030080

Lexa D., Saveant J.M., Zickler J. J. Am. Chem. Soc. 1980, 102, 2654-2663.

https://doi.org/10.1021/ja00528a023

Birke R.L., Huang Q., Spataru T., Gosser D.K. Jr. J. Am. Chem. Soc. 2006, 128, 1922-1936.

https://doi.org/10.1021/ja054479c

Sajan A., Birke R.L. Electroanalysis 2016, 28, 2743-2753.

https://doi.org/10.1002/elan.201600341

Dereven'kov I.A., Makarov S.V., Bui Thi T.T., Makarova A.S., Koifman O.I. Eur. J. Inorg. Chem. 2018, 2987-2992.

https://doi.org/10.1002/ejic.201800066

Pallares I.G., Moore T.C., Escalante-Semerena J.C., Brunold T.C. J. Am. Chem. Soc. 2016, 138, 3694-3704.

https://doi.org/10.1021/jacs.5b11708

Dürichen H, Diekert G, Studenik S. Protein Sci. 2019, 28, 1902-1908.

https://doi.org/10.1002/pro.3699

Johnston R.C., Zhou J., Smith J.C., Parks J.M. J. Phys. Chem. A 2016, 120, 7307-7318.

https://doi.org/10.1021/acs.jpcb.6b02701

Kumar M., Hirao H., Kozlowski P.M. J. Biol. Inorg. Chem. 2012, 17, 1107-1121.

https://doi.org/10.1007/s00775-012-0924-x

Kumar M., Kozlowski P.M. Angew. Chem. Int. Ed. 2011, 50, 8702-8705.

https://doi.org/10.1002/anie.201100469

Bhat S.A., Rashid N., Rather M.A., Pandit S.A., Ingole P.P., Bhat M.A. Electrochim. Acta 2020, 337, article number 135730

https://doi.org/10.1016/j.electacta.2020.135730

Robertson W.D., Bovell A.M., Warncke K. J. Biol. Inorg. Chem. 2013, 18, 701-713.

https://doi.org/10.1007/s00775-013-1015-3

Lexa D., Savéant J.-M. J. Chem. Soc., Chem. Commun. 1975, 872-874.

https://doi.org/10.1039/C39750000872

Shimakoshi H., Hisaeda Y. ChemPlusChem 2014, 79, 1250-1253.

https://doi.org/10.1002/cplu.201402081

Tian H., Shimakoshi H., Imamura K., Shiota Y., Yoshizawa K., Hisaeda Y. Chem. Commun. 2017, 53, 9478-9481.

https://doi.org/10.1039/C7CC04377E

Shimakoshi H., Luo Z., Tomita K., Hisaeda Y. J. Organomet. Chem. 2017, 839, 71-77.

https://doi.org/10.1016/j.jorganchem.2017.02.002

Ogawa A., Oohora K., Hayashi T. Inorg. Chem. 2018, 57, 14644-14652.

https://doi.org/10.1021/acs.inorgchem.8b02333

Grodkowski J., Neta P. J. Phys. Chem. A 2000, 104, 1848-1853.

https://doi.org/10.1021/jp9939569

Wang Y., Chen Z. Talanta 2010, 82, 534-539.

https://doi.org/10.1016/j.talanta.2010.05.020

Ji J., Chung Y., Kwon Y. J. Mat. Chem. C 2020, 8, 2749-2755.

https://doi.org/10.1039/C9TC06345E

Shahadat H.M., Younus H.A., Ahmad N., Shiguo Z., Zhuiykov S., Verpoort F. Chem. Commun. 2020, 56, 1968-1971.

https://doi.org/10.1039/C9CC08838E

Shimakoshi H., Hisaeda Y. Curr. Opin. Electrochem. 2018, 8, 24-30.

https://doi.org/10.1016/j.coelec.2017.12.001

Tahara K., Pan L., Ono T., Hisaeda Y. Beilstein J. Org. Chem. 2018, 14, 2553-2567.

https://doi.org/10.3762/bjoc.14.232

Thordarson P. Chem. Soc. Rev. 2011, 40, 1305-1323.

https://doi.org/10.1039/C0CS00062K

Zaitseva S.V., Zdanovich S.A., Koifman O.I. Macroheterocycles 2012, 5, 81-86.

https://doi.org/10.6060/mhc2012.111149z

Iwamoto H., Nishi S., Haino T. Chem. Commun. 2011, 47, 12670-12672.

https://doi.org/10.1039/c1cc14739k

Kundrat O., Kas M., Tkadlecova M., Lang K., Cvacka J., Stibor I., Lhotak P. Tetrahedron Lett. 2007, 48, 6620-6623.

https://doi.org/10.1016/j.tetlet.2007.07.137

Sallas F., Darcy R. Eur. J. Org. Chem. 2008, 6, 957-969.

https://doi.org/10.1002/ejoc.200700933

Korendovych I.V., Roesner R.A., Rybak-Akimova E.V. Adv. Inorg. Chem. 2007, 59, 109-173.

https://doi.org/10.1016/S0898-8838(06)59004-X

Puglisi A., Purrello R., Rizzarelli E., Sortino S., Vecchio G. New J. Chem. 2007, 31, 1499-1506.

https://doi.org/10.1039/b703680a

Hosokawa K., Miura Y., Kiba T., Kakuchi T., Sato S. Chem. Lett. 2008, 37, 60-61.

https://doi.org/10.1246/cl.2008.60

Fathalla M., Li S., Diebold U., Alb A., Jayawickramarajah J. Chem. Commun. 2009, 4209-4211.

https://doi.org/10.1039/b908050c

Kralova J., Kejik Z., Briza T., Pouckova P., Kral A., Martasek P., Kral V. J. Med. Chem. 2010, 53, 128-138.

https://doi.org/10.1021/jm9007278

Guo Y., Zhang P., Chao J., Shuang S., Dong C. Spectrochim. Acta A 2008, 71A, 946-950.

https://doi.org/10.1016/j.saa.2008.02.018

Fathalla M., Neuberger A., Li S.-C., Schmehl R., Diebold U., Jayawickramarajah J. J. Am. Chem. Soc. 2010, 132, 9966-9967.

https://doi.org/10.1021/ja1030722

Guo Y.-J., Chao J.-B., Pan J.-H. Spectrochim. Acta A 2007, 68A, 231-236.

https://doi.org/10.1016/j.saa.2006.11.019

Kiba T., Suzuki H., Hosokawa K., Kobayashi H., Baba S., Kakuchi T., Sato S. J. Phys. Chem. B 2009, 113, 11560-11563.

https://doi.org/10.1021/jp905904h

Ermilov E.A., Menting R., Lau J.T.F., Leng X., Roeder B., Ng D.K.P. Phys. Chem. Chem. Phys. 2011, 13, 17633-17641.

https://doi.org/10.1039/c1cp21930h

Samaroo D., Vinodu M., Chen X., Drain C.M. J. Comb. Chem. 2007, 9, 998-1011.

https://doi.org/10.1021/cc070067j

Tsuda A. Bull. Chem. Soc. Jpn. 2009, 82, 11-28.

https://doi.org/10.1246/bcsj.82.11

Goldberg I. CrystEngComm 2008, 10, 637-645.

https://doi.org/10.1039/b800107c

Boyd P.D.W., Reed C.A. Acc. Chem. Res. 2005, 38, 235-242.

https://doi.org/10.1021/ar040168f

Jurow M., Schuckman A.E., Batteas J.D., Drain C.M. Coord. Chem. Rev. 2010, 254, 2297-2310.

https://doi.org/10.1016/j.ccr.2010.05.014

Chen Y., Zhang Y., Liu Y. Isr. J. Chem. 2011, 51, 515-524.

https://doi.org/10.1002/ijch.201100010

Endo T. Chem. Rec. 2011, 11, 146-157.

https://doi.org/10.1002/tcr.201100001

Kraus T. Curr. Org. Chem. 2011, 15, 802-814.

https://doi.org/10.2174/138527211794518907

De Rossi R.H., Silva O.F., Vico R.V., Gonzalez C.J. Pure Appl. Chem. 2009, 81, 755-765.

https://doi.org/10.1351/PAC-CON-08-08-13

Ballester P., Claudel M., Durot S., Kocher L., Schoepff L., Heitz V. Chem. Eur. J. 2015, 21, 15339-15348.

https://doi.org/10.1002/chem.201502152

Maufroy A., Favereau L., Anne F.B., Pellegrin Y., Blart E., Hissler M., Jacquemin D., Odobel F. J. Mater. Chem. A 2015, 3, 3908-3917.

https://doi.org/10.1039/C4TA05974C

Koifman O.I., Mamardashvili N.Z., Antipon I.S. Synthetic Receptors on the Base of Porphyrins and Their Conjugates with Calix[4]arenes (Konovalov A.I., Ed.) Moscow, 2006. 248 p.

Mamardashvili G.M., Zvezdina S.V., Mamardashvili N.Z. Russ. J. Gen. Chem. 2011, 81, 594-601.

https://doi.org/10.1134/S1070363211030273

Kulikova O.M., Mamardashvili N.Z. Russ. J. Org. Chem. 2010, 46(8), 1244-1248.

https://doi.org/10.1134/S107042801008021X

Rossom W.V., Kundrat O., Ngo T.H., Lhotak P., Dehaen W., Maes W. Tetrahedron Lett. 2010, 51, 2423-2426.

https://doi.org/10.1016/j.tetlet.2010.02.137

Nakazawa J., Mizuki M., Shimazaki Y., Tani F., Naruta Y. Org. Lett. 2006, 8, 4275-4278.

https://doi.org/10.1021/ol061561j

Durot S., Taesch J., Heitz V. Chem. Rev. 2014, 114, 8542-8578.

https://doi.org/10.1021/cr400673y

Qiu W.-G., Li Z.-F., Bai G.-M., Meng S.-N., Dai H.-X., He H. Spectrochim. Acta A 2007, 66A, 1189-1193.

https://doi.org/10.1016/j.saa.2006.06.006

Guo Y.-J., Guo L., Pan J.-H. Phys. Chem. Liq. 2007, 45, 261-269.

https://doi.org/10.1080/00319100601137213

Tsuchiya Y., Yamano A., Shiraki T., Sada K., Shinkai S. Chem. Lett. 2011, 40, 99-101.

https://doi.org/10.1246/cl.2011.99

Callari F.L., Mazzaglia A., Scolaro L.M., Valli L., Sortino S. J. Mater. Chem. 2008, 18, 802-805.

https://doi.org/10.1039/b717260e

Yu M., Chen Y., Zhang N., Liu Y. Org. Biomol. Chem. 2010, 8, 4148-4154.

https://doi.org/10.1039/c0ob00080a

Favereau L., Warnan J., Anne F.B., Pellegrin Y., Blart E., Jacquemin D., Odobel F. J. Mater. Chem. A 2013, 1, 7572-7575.

https://doi.org/10.1039/c3ta11380a

Bichan N.G., Tyulyaeva E.Yu., Khodov I.A., Lomova T.N. J. Mol. Struct. 2014, 1061, 82-89.

https://doi.org/10.1016/j.molstruc.2013.12.074

Nguyen N.T., Mamardashvili G.M., Kulikova O.M., Scheblykin I.G., Mamardashvili N.Z., Dehaen W. RSC Adv. 2014, 4, 19703-19709.

https://doi.org/10.1039/C3RA45660A

Albrecht K., Kasai Y., Kimoto A., Yamamoto K. Macromolecules 2008, 41, 3793-3800.

https://doi.org/10.1021/ma800265h

Albrecht K., Kasai Y., Kuramoto Y., Yamamoto K. Chem. Comun. 2013, 46, 6861-6863.

https://doi.org/10.1039/c3cc43249a

Wang L., Li H., Deng J., Cao D. Curr. Org. Chem. 2013, 17, 3078-3091.

https://doi.org/10.2174/13852728113179990024

Su S., Ding Y., Li Y., Wu Y., Nie G. Biomaterials 2016, 80, 169-178.

https://doi.org/10.1016/j.biomaterials.2015.11.058

Tsolekile N., Nelana S., Oluwafemi O.S. Molecules 2019, 249140, 2669.

https://doi.org/10.3390/molecules24142669

Mamardashvili N., Maltseva O., Ivanova Y., Mamardashvili G. Tetrahedron Lett. 2008, 49, 3752-3756.

https://doi.org/10.1016/j.tetlet.2008.04.029

Paolesse R., Monti D., Nardis S., Di Natale C., Porphyrin-Based Chemical Sensors In: Handbook of Porphyrin Science (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing Co., 2013. p. 121-215.

https://doi.org/10.1002/chin.201311276

Cioates C., Van Staden S.- R., Van Staden F. J. Solid State Sci. Techn. 2020, 9, 051005.

https://doi.org/10.1149/2162-8777/ab9a5d

Gottfried M. J. Surf. Sci. Rep. 2015, 70, 259-379.

https://doi.org/10.1016/j.surfrep.2015.04.001

Fagadar-Cosma G., Birdeanu M., Fagadar-Cosma E. J. Res. Updates in Polym. Sci. 2016, 5, 39-51.

https://doi.org/10.6000/1929-5995.2016.05.01.4

Rodriguez-Mendez M., Antoniode de Saja J. Molecular Materials for Gas Sensor and Sensor Arrays. In: Adv. Nanomat. Inexpens. Gas Microsen. (Elsevier B.V., Liobet E., Eds.) 2020. p. 37-54.

https://doi.org/10.1016/B978-0-12-814827-3.00003-7

Paolesse R., Nardis S., Monti D., Stefanelli M., Di Natale C. Chem. Rev. 2017, 117, 2517−2583.

https://doi.org/10.1021/acs.chemrev.6b00361

Gouterman M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In: The Porphyrins. (Dolphin D., Ed.) New York: Academic, 1978. p. 1-128.

https://doi.org/10.1016/B978-0-12-220103-5.50008-8

Di Amico A., Di Natale C., Paolesse R., Macagnano A., Mantini A. Sens. Actuators 2000, B65, 209-215.

https://doi.org/10.1016/S0925-4005(99)00342-1

Rivera M., Rivera J. M., Amelines-Sarria O., Wang Y. A. Adv. Mater. Phys. Chem. 2018, 8, 441-457.

https://doi.org/10.4236/ampc.2018.811030

Celiesiute R., Ramanaviciene A., Gicevicius M., Ramanavicius A. Critical Rev. Anal. Chem. 2018, 49, 195–208.

https://doi.org/10.1080/10408347.2018.1499009

Supriya S., Shetti V. S., Hegde G. New J. Chem. 2018, 42, 12328-12348.

https://doi.org/10.1039/c8nj02254b

Itagaki Y., Deki K., Nakashima S-I., Sadaoka Y. Sens. Actuat. B Chem. 2005, 108, 393-397.

https://doi.org/10.1016/j.snb.2004.10.055

Ma X., Sun J., Wang M., Hu M., Chen G.H., Huang J. Sens. Actuat. B 2006, 114, 1035-1042.

https://doi.org/10.1016/j.snb.2005.07.073

Korposh S.O., Takahara N., Ramsden J.J., Lee S.-W., Kunitake T. J. Biol. Phys. Chem. 2006, 6, 125-132.

Muthukumar P., John S.A. Sens. Actuat., B 2011, 159, 238−244.

https://doi.org/10.1016/j.snb.2011.06.079

Kalimuthu P., Sivanesan A., John S.A. J. Chem. Sci. 2012, 124, 1315-1325.

https://doi.org/10.1007/s12039-012-0330-5

Cano M., Castillero P., Roale J., Pedrosa J.M., Brittle S., Richardson T., González-Elipe A.R., Barranco A. Sensor. Actuat. B Chem. 2010, 150, 764-769.

https://doi.org/10.1016/j.snb.2010.07.059

Lv Y., Wu J., Xu Z.K. Sensor. Actuat. B-Chem. 2010, 148, 233-239.

https://doi.org/10.1016/j.snb.2010.05.029

Lin F.-W., Xu X.-L., Wan L.-S., Wu J., Xu Z.K. RSC Adv. 2015, 5, 30472−30477.

https://doi.org/10.1039/C5RA01605C

Hu M., Kang W., Cheng B., Li Z., Zhao Y., Li L. Microchem. Acta 2016, 183(5), 1713-1720.

https://doi.org/10.1007/s00604-016-1801-z

Hu M., Kang W., Zhao Y., Shia J., Cheng B. RSC Adv. 2017, 7, 26849-26856.

https://doi.org/10.1039/C7RA02040F

Hu M., Kang W., Zhong Z., Cheng B., Xing W. Ind. Eng. Chem. Res. 2018, 57(34), 11668-11674.

https://doi.org/10.1021/acs.iecr.8b02902

Wang B., Chen Z., Zuo X., Wu Y., He C., Wang X., Li Z. Sensor. Actuat., B-Chem. 2011, 160, 1-6.

https://doi.org/10.1016/j.snb.2011.06.049

Muthukumar P., John S.A. Sensor. Actuat. B-Chem. 2012, 174, 74-80.

https://doi.org/10.1016/j.snb.2012.08.022

Castillero P., Roales J., Lopes-Costa T., Sanchez-Valencia J.R., Barranco A., Gonzalez-Elipe A.R., Pedrosa J.M. Sensors 2017, 17, 24-38.

https://doi.org/10.3390/s17010024

Kim J., Lim S.-H., Yoon Y., Thangadurai T.D., Yoon S. Tetrahedron Lett. 2011, 52, 2645-2648.

https://doi.org/10.1016/j.tetlet.2011.03.048

Korposh S., James S.W., Lee S.-W., Topliss S.M., Cheung S.C., Batty W.J., Tatam R.P. Opt. Express 2010, 18, 13227-13238.

https://doi.org/10.1364/OE.18.013227

Jarzebinska R., Korposh S., James S., Batty W., Tatam R., Lee S.-W. Anal. Lett. 2012, 45(10), 1297-1309.

https://doi.org/10.1080/00032719.2012.673097

Wang T., Korposh S., James S.W., Tatam R. P., Lee S-W. Sens. Actuators, B 2016, 228, 573-580.

https://doi.org/10.1016/j.snb.2016.01.058

Korposh S., Kodaira S., Selyanchyn R., Ledezma F.H., James S.W., Lee S.-W. Opt. Laser Tech. 2018, 101, 1-10.

https://doi.org/10.1016/j.optlastec.2017.10.027

Sawada K., Tanaka T., Yokoyama T., Yamachi R., Oka Y., Masai H., Terao J., Uchida K. Jpn. J. Appl. Phys. 2020, 59, 1-6.

https://doi.org/10.35848/1347-4065/ab6b80

Richardson T.H., Brook R.A., Davis F., Hunter C.A. Coll. Sur. A: Physicochem. Eng. Aspects 2006, 284-285, 320-325.

https://doi.org/10.1016/j.colsurfa.2005.11.076

Roales J., Pedrosa J.M., Castillero P., Cano M., Richardson T.H. Thin Solid Films 2011, 519, 2025−2030.

https://doi.org/10.1016/j.tsf.2010.10.038

Roales J., Pedrosa J.M., Guillen M.G., Lopes-Costa T., Castillero P., Barranco A., González-Elipe A.R. Sensors 2015, 15, 11118-11132.

https://doi.org/10.3390/s150511118

Mc Donagh C., Burke C.S., Mc Craith B.D. Chem. Rev. 2008, 108, 400−422.

https://doi.org/10.1021/cr068102g

Peter C., Schmitt K., Apitz M., Woellenstein J. Microsyst. Technol. 2012, 18, 925-930.

https://doi.org/10.1007/s00542-011-1412-x

Abudukeremu H., Kari N., Zhang Y., Wang J., Nizamidin P., Abliz S., Yimit A. J. Mater. Sci. 2018, 53, 10822-10834.

https://doi.org/10.1007/s10853-018-2374-5

Kutilike B., Kari N., Zhang Y., Nizamidin P., Yimit A. Meas. Sci. Technol. 2020, 31, 055105.

https://doi.org/10.1088/1361-6501/ab6e24

Diab N., Schuhmann W. Electrochim. Acta 2001, 47, 265-273.

https://doi.org/10.1016/S0013-4686(01)00565-5

Miki H., Matsubara F., Nakashima S., Ochi S., Nakagawa K., Matsuguchi M., Sadaoka Y. Sens. Actuat. 2016, 231, 458-468.

https://doi.org/10.1016/j.snb.2016.02.145

Shiba S., Yamada K., Matsuguchi M. Sensors 2020, 20, 1295.

https://doi.org/10.3390/s20051295

Khan A.H., Rao M.V., Li Q. Sensors 2019, 19(905), 1-39.

https://doi.org/10.3390/s19040905

Strianese M., Lamberti M., Pellecchi C. Dalton Trans. 2017, 46, 1872-1879.

https://doi.org/10.1039/C6DT04753J

Vikrant K., Kumar V., Ok Y., Kim K., Deep A. Trends Anal. Chem. 2018, 105, 263-281.

https://doi.org/10.1016/j.trac.2018.05.013

Chen J., Zhu Y., Kaskel S. Angew. Chem. Int. Ed. 2020.

https://doi.org/10.1002/anie.201909880

Ma Y., Su H., Kuang X., Li X., Zhang T., Tang, B. Anal. Chem. 2014, 86(22), 11459-11463.

https://doi.org/10.1021/ac503622n

Tuerdi G., Kari N., Yan Y., Nizamidin P., Yimit A. Sensors 2017, 17(12), 2717. doi:10.3390/s17122717.

https://doi.org/10.3390/s17122717

Mamtmin G., Kari N., Abdurahman R., Nizamidin P., Yimit A. Opt. Las. Tech. 2020, 128, 106260.

https://doi.org/10.1016/j.optlastec.2020.106260

Maimaiti A., Abdurahman R., Kari N., Ma Q., Wumaier K., Nizamidin P., Yimit A. J. Modern Opt. 2020, 67(6), 507-514.

https://doi.org/10.1080/09500340.2020.1758817

Amao Y., Okura I. J. Porphyrins Phthalocyanines 2009, 13, 1111-1122.

https://doi.org/10.1142/S1088424609001455

Hutter L.H., Muller B.J., Koren K., Borisov S.M., Klimant I. J. Mater. Chem. C 2014, 2, 7589-7598.

https://doi.org/10.1039/C4TC00983E

Kimura T., Watanabe S., Sawada S., Shibasaki Y., Oishi Y. J. Polym. Sci., A: Pol. Chem. 2017, 55, 1086-1094.

https://doi.org/10.1002/pola.28469

Arunkumar C., Kooriyaden F. R., Zhang X., Sujatha S., Zhao J. New J. Chem. 2017, 41, 4908-4917.

https://doi.org/10.1039/C7NJ01141E

Biring S., Sadhu A.S., Deb M. Sensors 2019, 19, 5124.

https://doi.org/10.3390/s19235124

Mao Y., Gao Y., Wu S., Wu S., Shi J., Zhou B., Tian Y. Sens. Actuat. B: Chem. 2017, 251, 495-502.

https://doi.org/10.1016/j.snb.2017.05.081

Mao Y., Mei Z., Wen J., Li G., Tian Y., Zhou B., Tian Y. Sens. Actuat. 2018, B257, 944-953.

https://doi.org/10.1016/j.snb.2017.11.042

Mao Y., Akram M., Shi J., Wen J., Yang C., Jiang J., Zhou B., Tian Y. Sens. Actuat. B: Chem. 2019, 282, 885-895.

https://doi.org/10.1016/j.snb.2018.11.143

Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Cote D., Vinogradov S.A., Scadden D.T., Lin C.P. Nature 2014, 508, 269-273.

https://doi.org/10.1038/nature13034

The Porphyrin Handbook. Biochemistry and Binding: Activation of Small Molecules. Vol. 4. (Kadish K.M., Smith K.M., Guilard R., Eds.) New York: Academ. Press, 2000. 341 p.

Porphyrins: Spectroscopy, Electrochemistry, Applications. (Enikolopyan N.S., Ed.) Moscow: Nauka, 1987. 384 p.

Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Russ. Chem. Rev. 2005, 74(8), 765-780.

https://doi.org/10.1070/RC2005v074n08ABEH001056

Zaitsev S.Yu. Supramolecular Nanoscale Systems at the Interface of the Phases. Concepts and Perspectives for Bionanotechnologies. М.: LENAND, 2010. 212 p.

Kitzerow H-S, Bahr C. Chirality in Liquid Crystals. New York (NY): Springer-Verlag Inc, 2001.

https://doi.org/10.1007/b97374

Kelly S.M., O'Neill M. Liquid Crystals for Electro-Optic Applications. In: Handbook of Advanced Electronic and Photonic Materials and Devices Vol. 7: Liquid Crystals, Display and Laser Materials. (Nalwa H.S., Ed.) N.Y. etc.: Academic Press, 2000. p. 1-66.

https://doi.org/10.1016/B978-012513745-4/50057-3

Onuchak L.A., Arutunov J.I., Kuraeva J.G., et.al. Method for Analysis of Structural and Optical Isomers, 2014, Patent RF No RU 2528126.

Matt B., Pondman K.M., Asshoff S.J., et al. Angew. Chem. Int. Edit. 2014, 53, 12446.

https://doi.org/10.1002/anie.201404312

Eelkema R. Liq. Cryst. 2011, 38, 1641-1652.

https://doi.org/10.1080/02678292.2011.600779

Cachelin P., Green J.P., Peijs T., Heeney M., Bastiaansen W.M. Adv. Opt. Mater. 2016, 4, 592-596.

https://doi.org/10.1002/adom.201500549

Iwan A., Boharewicz B., Tazbir I., Hamplová V., Bubnov A. Solid-State Electronics 2015, 104, 53-60.

https://doi.org/10.1016/j.sse.2014.11.010

Ishida Y., Kai Y., Kato S., et al. Angew. Chem. Int. Edit. 2008, 47, 8241-8245.

https://doi.org/10.1002/anie.200803242

Van Delden R.A., Koumura N., Harada N., Feringa B.L. PNAS. 2002, 99, 4945-4949.

https://doi.org/10.1073/pnas.062660699

Gottarelli G., Spada G.P. Mol. Cryst. Liq. Cryst. 1985, 123(1), 377-388.

https://doi.org/10.1080/00268948508074792

Celebre G., de Luca G., Maiorino M., et al. J. Amer. Chem. Soc. 2005, 127, 11736-11744.

https://doi.org/10.1021/ja051589a

Watanabe G., Yoshida J. J. Phys. Chem. B 2016, 120, 6858-6864.

https://doi.org/10.1021/acs.jpcb.6b04669

Yoshida J., Watanabe G., Kakizawa K., et al. Inorg. Chem. 2013, 52, 11042-11050.

https://doi.org/10.1021/ic401240f

Engelmann M., Braun M., Kuball H‐G. Liq. Cryst. 2007, 34, 73-77.

https://doi.org/10.1080/02678290601061496

Braun M., Hahn A., Engelmann M., et al. Chem. Eur. J. 2005, 11, 3405-3412.

https://doi.org/10.1002/chem.200401292

Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine.Vol. 7. Physicochemical Characterization. (Kadish K.M., Smith K.M., Guilard R., Eds.) World Scientific Publishing: Co. Pte. Ltd., 2010.

Kobayashi N. Optically Active Porphyrin Systems Analyzed by Circular Dichroism. In: Handbook of Porphyrin Science. Vol. 7. Ch. 33. (Kadish K.M., Smith K.M., Guilard R., Eds.) Singapore: World Scientific, 2010. p.147−240.

https://doi.org/10.1142/9789814307246_0005

Lu H., Kobayashi N. Chem Rev. 2016, 116, 6184-6261.

https://doi.org/10.1021/acs.chemrev.5b00588

Lehmann M., Dechant M., Gerbig L., et al. Liq. Cryst. 2019, 46, 1985-1994.

https://doi.org/10.1080/02678292.2019.1618936

Burmistrov V.A., Novikov I.V., Aleksandriiskii V.V., et al. J. Mol. Liq. 2019, 287, 110961.

https://doi.org/10.1016/j.molliq.2019.110961

Burmistrov V.A., Novikov I.V., Alexandriiskii V.V., Semeikin A.S., Koifman O.I. Liq. Cryst. 2020. DOI:10.1080/02678292.2020.1817583.

https://doi.org/10.1080/02678292.2020.1817583

Davankov V.A. Ligand Exchange Chromatography. Encyclopedia of Separation Science.Vol. 5. (Wilson I.D., Adlard E.R., Cooke M., Pool C.F., Eds.) Amsterdam: Acad.Press, 2000. p. 2369-2380.

https://doi.org/10.1016/B0-12-226770-2/03111-2

Davankov V., Navratil J., Walton H. Ligand Exchange Chromatography. USA: SRC-Press, 1988. 209 p.

Wenzel T.J., Yarmaloff L.W., St.Cyr L.Y., O'Meara L.J., Donatelli M., Bauer R.W. J. Chromatogr. 1987, 396, 51-64.

https://doi.org/10.1016/S0021-9673(01)94042-7

Burmistrov V.A., Rodicheva J.A., Trifonova I.P., Koifman O.I. Modern Tendencies in Materials Functionalization by Macroheterocycles. In: Functional Materials Based on Tetrapyrrole Macrocyclic Compounds. Chapter 1. (Koifman O.I., Ed.) URSS, 2019. p. 17-62.

Krestov A.G., Blokhina S.V., Galyametdinov Yu.G., Ol'khovich M.V., Lokhanov V.V. Russ. J. Phys. Chem. 1993, 67(1), 151-154.

Kuvshinov G.V., Maizlish V.E., Kuvshinova S.A., Burmistrov V.A., Koifman O.I. Macroheterocycles 2016, 9(3), 244-249.

https://doi.org/10.6060/mhc160318k

Burmistrov V.A., Semeikin A.S., Kuvshinov G.V., Aleksandriiskii V.V., Lubimova T.V., Kuvshinova S.A., Koifman O.I. J. Porphyrins Phthalocyanines 2017, 21, 103-109.

https://doi.org/10.1142/S1088424617500110

Sanders J.K.M., Bampos N., Clude-Watson Z., Darling S.L., Hawley J.C., Kim H.-J., Mak C.C., Webb S.J. Axial Coordination Chemistry of Metalloporphyrins. In: The Porphyrin Handbook, Vol. 3, Ch. 15. (Kadish K.M., Smit K.M., Guilard R., Eds.) New York: Academ. Press, 2000. p. 1-47.

Grajek H., Witkiewicz Z., Purchała M., Drzewin'ski W. Chromatographia 2016, 79, 1217-1245.

https://doi.org/10.1007/s10337-016-3154-5

Burmistrov V.A., Semeikin A.S., Lubimova T.V., Novikov I.V., Litov K.M., Aleksandriiskii V.V., Kuvshinova S.A., Koifman O.I. Nickel Complex of 5,10,15,20-tetrakis[3',5'-di-(2'-methylbutyloxy)phenyl]-porphin Exhibiting the Stationary Phase Property for Gas Chromatography, 2015, Patent RF No 2557655.

Allenmark S.G. Chromatographic Enantioseparation: Methods Applications. Chichester: Horwood, 1988. 224 p.

Kuvshinov G.V., Koifman O.I. Russ. J. Phys. Chem. A 2018, 92(10), 2025-2031.

https://doi.org/10.1134/S0036024418100163

Kuvshinov G.V., Kuvshinova S.A., Burmistrov V.A., Koifman O.I. Sorbent for Gas Chromatography, 2017, Patent RF No 2621 337.

Kuvshinov G.V., Kuvshinova S.A., Koifman O.I. J. Anal. Chem. 2017, 72(11), 1172-1177.

https://doi.org/10.1134/S1061934817110065

Kuvshinov G.V., Koifman O.I. Russ. J. Gen. Chem. 2019, 89, 1279-1285.

https://doi.org/10.1134/S1070363219060240

Executive Orders №1629n dated 29.12.2012 and №915n dated 15.11.2012 of the Ministry of Health of the Russian Federation.

Abrahamse H., Hamblin M. Biochem. J. 2016, 473, 347-364.

https://doi.org/10.1042/BJ20150942

Kwiatkowski S., Knap B., Przystupski D. et al. Biomedicine & Pharmacotherapy 2018, 106, 1098-1107.

https://doi.org/10.1016/j.biopha.2018.07.049

Zhang X.H., Zhang L.J., Sun J.J. et al. Biomedicine & Pharmacotherapy 2016, 81, 265-272.

https://doi.org/10.1016/j.biopha.2016.04.007

Mironov A.F. Russ. J. Gen. Chem. 2019, 89, 1952-1983.

https://doi.org/10.1134/S1070363219090354

Ethirajan Y., Chen Y., Joshi P., Pandey R.K. Chem. Soc. Rev. 2011, 40, 340-362.

https://doi.org/10.1039/B915149B

Senge M.O., Brandt J.C. Photochem. Photobiol. 2011, 87, 1240-1296.

https://doi.org/10.1111/j.1751-1097.2011.00986.x

Bonnett R. Chemical Aspects of Photodynamic Therapy. Amsterdam: Gordon and Breach Science Publishers, 2000.

https://doi.org/10.1201/9781482296952

Muragaki Y., Akimoto J., Manuyama T. et al. J. Neurosung. 2013, 119, 845-852.

https://doi.org/10.3171/2013.7.JNS13415

Kobayashi W., Liu Q., Nakagawa H. et al. Oral. Oncol. 2006, 42, 45-49.

https://doi.org/10.1016/j.oraloncology.2005.05.009

Saavedra R., Rocha L.B., Dabrowski J.M. et al. Chem. Med. Chem. 2014, 9, 390-398.

https://doi.org/10.1002/cmdc.201300449

Shan W.M., Lim T.H., Pece A., et al. Graefes. Arch. Clin. Exp. Ophthalmol. 2010, 248, 613-626.

https://doi.org/10.1007/s00417-010-1307-z

Sessler J.L., Miller R.A. Biochem. Pharmacol. 2000, 59, 733-739.

https://doi.org/10.1016/S0006-2952(99)00314-7

Josefsen L.B., Boyle R.W. Metal-Based Drugs 2008, 200, 1-24.

https://doi.org/10.1155/2008/276109

Scherz A., Salomon Y. The Story of Tookad, From Bench to Bedside. In: Handbook of Photomedicine. (Hamblin M.R., Huang Y.Y., Eds.) CRC Press, Boca Raton, FL, 2014.

https://doi.org/10.1201/b15582-43

Chevalier S., Anidjar M., Scarlata E., et al. J. Urol. 2011, 196, 302-309.

https://doi.org/10.1016/j.juro.2011.03.039

Ashur I., Goldschmidt R., Pinkas I., et al. J. Phys. Chem. A 2009, 113, 8027-8037.

https://doi.org/10.1021/jp900580e

Scherz A., Salomon Y., Coleman. J. Photodiagn. Photodyn. Ther. 2017, 17, 22-31.

https://doi.org/10.1016/j.pdpdt.2017.01.049

Lobel J., MacDonald I.J., Ciesielski M.Y., et al. Laser Surg. Med. 2001, 29, 397-405.

https://doi.org/10.1002/lsm.10001

Peng Q., Berg K., Moan J., et al. Photochem. Photobiol. 1997, 65, 235-251.

https://doi.org/10.1111/j.1751-1097.1997.tb08549.x

Krammer B., Plaetzer K. Photochem. Photobiol. Sci. 2008, 7, 283-289.

https://doi.org/10.1039/B712847A

Furre I.E., Shahzidi S., Luksiene Z., et al. Cancer Res. 2005, 65, 11051-11060.

https://doi.org/10.1158/0008-5472.CAN-05-0510

Romanko Y.S., Tsyb A.F., Kaplan M.A., et al. Bull. Exp. Biol. Med. 2004, 138, 584-589.

https://doi.org/10.1007/s10517-005-0133-5

Petrov P., Trukacheva T., Kaplan M., 2006, European Patent Application EP 1610821.

Biswas R., Moon J.H., Ahn J.C. Photochem. Photobiol. 2014, 90, 1108-1118.

https://doi.org/10.1111/php.12273

Pucelic B.L., Arnaut G., Stochel G., et al. ACS Appl. Mater. Interfaces 2016, 8, 22039-22055.

https://doi.org/10.1021/acsami.6b07031

Santos L.L., Oliveira J., Monteiro E., et al. Case Rep. Oncol. 2018, 11, 769-776.

https://doi.org/10.1159/000493423

Ormond A.B., Freeman H.S. Materials 2013, 6, 817-840.

https://doi.org/10.3390/ma6030817

Pereira P.M.R., Korsak B., Sarmento B., et al. Org. Biomol. Chem. 2015, 13, 2518-2529.

https://doi.org/10.1039/C4OB02334J

Moret F., Reddi E. J. Porphyrins Phthalocyanines 2017, 21, 1-18.

https://doi.org/10.1142/S1088424616501273

Pucelik B., Sułek A., Dąbrowski J.M. Coord. Chem. Rev. 2020, 416 , 213340. https://doi.org/10.1016/j.ccr.2020.213340

Mironov A.F., Zhdanova K.A., Bragina N.A. Russ. Chem. Rev. 2018, 87, 859-881.

https://doi.org/10.1070/RCR4811

Sandland J., Malatesti N., Boyle R. Photodiagnosis Photodyn. Ther. 2018, 23, 281-294.

https://doi.org/10.1016/j.pdpdt.2018.06.023

Boyle R.W., Sandland J. Bioconjugate Chem. 2019, 30, 975-993.

https://doi.org/10.1021/acs.bioconjchem.9b00055

Hamblin M.R. Photochem. Photobiol. 2020, 96, 506-516.

https://doi.org/10.1111/php.13190

Sato K., Nagaya T., Choyke P.L., et al. Theranostics 2015, 5, 698-709.

https://doi.org/10.7150/thno.11559

Parslow A.C., Parakh S., Lee F.T. Biomedicines 2016, 4, 14-31.

https://doi.org/10.3390/biomedicines4030014

You H., Yoon H.E., Jeong P.M., et al. Bioorg. Med. Chem. 2015, 23, 1453-1462.

https://doi.org/10.1016/j.bmc.2015.02.014

Yang N.J., Hinner M.J. Meth. Mol. Biol. 2015, 126, 29-53.

https://doi.org/10.1007/978-1-4939-2272-7_3

Park S.Y., Baik H.J., Oh Y.T., et al. Angew. Chem. Int. Ed. Engl. 2011, 50, 1644-1647.

https://doi.org/10.1002/anie.201006038

Singh S., Aggarwal A., Dinesh N.V.S., et al. Chem. Rev. 2015, 115, 10261-10306.

https://doi.org/10.1021/acs.chemrev.5b00244

El-Akra N., Noirot A., Faye J.C., et al. Photochem. Photobiol. Sci. 2006, 5, 996-999.

https://doi.org/10.1039/B606117F

Stefflova K., Li H., Chen J., et al. Bioconjugate Chem. 2007, 18, 379-388.

https://doi.org/10.1021/bc0602578

Gravier J., Schneider R., Frochot C., et al. J. Med. Chem. 2008, 51, 3867-3877.

https://doi.org/10.1021/jm800125a

Suvorov N.V., Mironov A.F., Grin M.A. Russ. Chem. Bull. 2017, 1982-2008.

https://doi.org/10.1007/s11172-017-1973-7

Barondes S.H., Castronovo V., Cooper D.N.W., et al. Cell 1994, 76, 597-598.

https://doi.org/10.1016/0092-8674(94)90498-7

Zheng X., Pandey R.K. Anti-Cancer Agents in Med. Chem. 2008, 8, 241-268.

https://doi.org/10.2174/187152008783961897

Aksenova A.A., Sebyakin Yu.L., Mironov A.F. Russ. J. Bioorg. Chem. 2000, 26, 111-124.

https://doi.org/10.1007/BF02759156

Aksenova A.A., Sebyakin Yu.L., Mironov A.F. Russ. J. Bioorg. Chem. 2001, 27, 124-129.

https://doi.org/10.1023/A:1011389321240

Mironov A.F., Lebedeva V.S. Tetrahedron Lett. 1998, 39, 905-908.

https://doi.org/10.1016/S0040-4039(97)10687-6

Lebedeva V.S., Ruziev R.D., Popov A.V., et al. Mendeleev Commun. 2007, 17, 212-213.

https://doi.org/10.1016/j.mencom.2007.06.008

Lonin I.S. Ph.D. Thesis in Chemical Science "Synthesis and Examination of Properties of Natural Chlorins and Bacteriochlorins", Moscow, 2009. (in Russ.).

Lonin I.S., Lakhina A.A., Grin M.A., et al. Mendeleev Commun. 2012, 22, 157-158.

https://doi.org/10.1016/j.mencom.2012.05.016

Grin M.A., Lonin I.S., Makarov A.I., et al. Mendeleev Commun. 2008, 18, 135-137.

https://doi.org/10.1016/j.mencom.2008.05.008

Lonin I.S., Makarov A.I., Lakhina A.A., et al. J. Porphyrins Phthalocyanines 2008, 12, 619.

Grin M.A., Lonin I.S., Lakhina A.A., Ol'shanskaya E.S., Makarov A.I., Sebyakin Y.L., Guryeva L.Yu., Toukach P.V., Kononikhin A.S., Kuzmin V.A., Mironov A.F. J. Porphyrins Phthalocyanines 2009, 13, 336-345.

https://doi.org/10.1142/S1088424609000425

Grin M.A., Plotnikova E.A., Plyutinskaya A.D., et al. Russ. Biother. J. 2012, 11, 14.

Petrov P., Trukhacheva T., Isakov G., et al. Acta Bioopt. Inform. Med. 2004, 10, 6-7.

Trukhacheva T.V., Shlyahtin S.V., Isakov G.A., et al. Fotolon - A Novel Solution for PDT. Review of the Results of Pharmaceutical, Pharmacological and Clinical Trials. Minsk: RUP "Belmedpreparaty", 2009. p. 64. ISBN 978-5-89552-367-4.

Kularatne S.A., Venkatesh C., Santhapuram H.K.R., et al. J. Med. Chem. 2010, 53, 7767-7777.

https://doi.org/10.1021/jm100729b

Hillier S.M., Maresca K.P., Lu G., et al. J. Nucl. Med. 2013, 54, 1369-1376.

https://doi.org/10.2967/jnumed.112.116624

Stoermer D., Liu Q., Hall M.R., et al. Bioorg. Med. Chem. Lett. 2003, 13, 2097-2100.

https://doi.org/10.1016/S0960-894X(03)00407-4

Hargus J.A., Fronczek F.R., Vicente M.G.H., Smith K.M. Photochem. Photobiol. 2007, 83, 1006-1015.

https://doi.org/10.1111/j.1751-1097.2007.00092.x

Jinadasa R.G.W., Hu X., Vicente M.G.H., Smith K.M. J. Med. Chem. 2011, 54, 7464-7476.

https://doi.org/10.1021/jm2005139

Jinadasa R.G.W., Zhou Z., Vicente M.G.H., Smith K.M. Org. Biomol. Chem. 2016, 14, 1049-1064.

https://doi.org/10.1039/C5OB02241J

Bommer J.C., Ogden B.F. Tetrapyrrole Therapeutic Agents, 1987, U.S. Patent 4,693.885.

Pandey R.K., Zheng G. Porphyrins as Photosensitizers in Photodynamic Therapy. In: The Porphyrin Handbook. Vol. 6. (Kadish K. M., Smith K. M., Guilard R., Eds.) Boston: Academic Press, 2000. p. 157-230.

Suvorov N.V. Ph.D. Thesis in Chemical Science "Modified Natural Chlorins of Targeted Action Against Tumor Cells of Various Genesis", Moscow, 2019.

Grin M.A., Suvorov N.V., Machulkin A.E., et al., 2018, Patent RU 2670087 C1.

Oliveira B.L., Guo Z., Bernardes G.J.L. Chem. Soc. Rev. 2017, 46, 4895-4950.

https://doi.org/10.1039/C7CS00184C

Suvorov N.V., Cheskov D.A., Mironov A.F., et al. Mendeleev Commun. 2019, 29, 206-207.

https://doi.org/10.1016/j.mencom.2019.03.031

Suvorov N.V., Machulkin A.E., Ivanova A.V., et al. J. Porphyrins Phthalocyanines 2018, 22, 1030-1038.

https://doi.org/10.1142/S1088424618501006

Selbo P.K., Bostad M., Olsen C.E., et al. Photochem. Photobiol. Sci. 2015, 14, 1433-1450.

https://doi.org/10.1039/C5PP00027K

Sultan A.A., Jerjes W., Berg K., et al. Lancet Oncol. 2016, 17, 1217-1229.

https://doi.org/10.1016/S1470-2045(16)30224-8

Kochneva E.V., Filonenko E.V., Vakulovskaya E.G., et al. Photodiagnosis Photodyn. Ther. 2010, 7, 258-267.

https://doi.org/10.1016/j.pdpdt.2010.07.006

Shiryaev A.A., Musaev G.K., Levkin V.V., et al. Photodiagnosis Photodyn. Ther. 2019, 26, 218-223.

https://doi.org/10.1016/j.pdpdt.2019.04.006

Baker M. Nature 2010, 463, 977-980.

https://doi.org/10.1038/463977a

Thorp-Greewood F.L., Coogan M.P. Dalton Trans. 2011, 40, 6129-6143.

https://doi.org/10.1039/c0dt01398f

Mewis R.E., Archibald S.J. Coord. Chem. Rev. 2010, 254, 1682-1712.

https://doi.org/10.1016/j.ccr.2010.02.025

Rashid H.U., Khan K., Yaseen M., et al. Rev. Roum. Chim. 2014, 59, 27-33.

Grin M.A., Brusov S.S., Shchepelina E.Y., et al. Mendeleev Commun. 2017, 27, 338-340.

https://doi.org/10.1016/j.mencom.2017.07.005

Mironov A.F. Transition Metal Complexes of Porphyrins and Porphyrinoids. In: Handbook of Porphyrin Science. Vol 18. Applications and Materials. (Kadish K.M., Smith K.M., Guillard R., Eds). World Scientific, 2012. p. 304-413.

https://doi.org/10.1142/9789814335508_0012

Rumyantseva V.D., Shchelkunova A.E., Gorshkova A.S., Alekseev Yu.V., Shumilova N.M., Shilov I.P., Ivanov A.V., Mironov A.F. Fine Chem. Technol. 2017, 12, 72-80.

https://doi.org/10.32362/2410-6593-2017-12-2-72-80

Smirnov A.S., Grin M.A., Mironov A.F. Fine Chem. Technol. 2019, 14, 95-103.

https://doi.org/10.32362/2410-6593-2019-14-6-95-103

Brusov S.S. Ph.D. Thesis in Chemical Science "Natural Chlorins with Photoinduced Antibacterial, Antitumor Activity and Diagnostic Potential", Moscow, 2018.

Zenkevich E., Sagun E., Knyukshto V., Shulga A., Mironov A., Efremova O., Bonnett R., Songca S.P., Kassem M.J. Photochem. Photobiol. B: Biol. 1996, 33, 171-180.

https://doi.org/10.1016/1011-1344(95)07241-1

Parkhats M.V., Galievsky V.A., Stashevsky A.S., Trukhacheva T.V., Dzhagarov B.M. Opt. Spectrosc. 2009, 107(6), 974-980.

https://doi.org/10.1134/S0030400X09120200

Henderson B.W., Sumlin A.B., Owcharczak B.L., Dougherty T.J. Photochem.Photobiol. B 1991, 10, 303-313.

https://doi.org/10.1016/1011-1344(91)80016-B

Koudinova N.V., Pinthus J.H., Brandis A., Brenner O., Bendel P., Ramon J., Eshhar Z., Scherz A., Salomon Y. Int. J. Cancer 2003, 104, 782-789.

https://doi.org/10.1002/ijc.11002

Brandis A., Mazor O., Neumark E., Rozenbach V.-Belkin, Salomon Y., Scherz A. Photochem. Photobiol. 2005, 81, 983-993.

https://doi.org/10.1562/2004-12-01-RA-389R1.1

Grin M.A., Mironov A.F., Shtil A.A. Anti-Cancer Agents in Med. Chem. 2008, 8, 683-697.

https://doi.org/10.2174/187152008785133128

Grin M.A., Mironov A.F. In: Chemical Processes with Participation of Biological and Related Compounds (Lomova T.N., Zaikov G. T., Ed.) Boston, Brill: Leiden, 2008. p. 5-43.

Eisner U. J. Chem. Soc. 1957, 3461-3469.

https://doi.org/10.1039/jr9570003461

Scheer H. Chlorophylls. Boston, London: CRC Press, Boca Raton Ann Arbor, 1991. p. 115-143.

Mironov A.F., Efremov A.V., 1996, Patent RF No 2144085.

Tsygankov A.A., Laurinavichene T.V., Gogotov I.N. Biotechnol. Tech. 1994, 8, 575-578.

https://doi.org/10.1007/BF00152149

Tsygankov A.A., Laurinavichene T.V., Bukatin V.E., Gogotov I.N., Hall D.O. Biochem. Microbiol. 1997, 33, 485-490.

Prinsep M.R., Caplan F.R., Moore R.E., Patterson G.M.L., Smith C.D. J. Am. Chem. Soc. 1992, 114, 385-387.

https://doi.org/10.1021/ja00027a072

Prinsep M.R., Patterson G.M.L., Larsen L.K., Smith C. D. Tetrahedron 1995, 51, 10523-10530.

https://doi.org/10.1016/0040-4020(95)00615-F

Prinsep M.R., Patterson G.M.L., Larsen L.K., Smith C. D. J. Nat. Prod. 1998, 61, 1133-1136.

https://doi.org/10.1021/np970566+

Prinsep M.R., Appleton T.G., Hanson G.R., Lane I., Smith C.D., Puddick J., Fairlie, D.P. Inorg. Chem. 2017, 56, 5577-5585.

https://doi.org/10.1021/acs.inorgchem.6b03000

Minehan T.G., Kishi Y. Angew. Chem. Int. Ed. 1999, 38, 923−925.

https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<923::AID-ANIE923>3.0.CO;2-7

Minehan T.G., Cook-Blumberg L., Kishi Y., Prinsep M.R., Moore R.E. Angew. Chem. Int. Ed. 1999, 38, 926−928.

https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<926::AID-ANIE926>3.0.CO;2-W

Hoebeke M., Schuitmaker H.J., Jannink L.E., et al. Photochem. Photobiol. 1997, 66, 502-508.

https://doi.org/10.1111/j.1751-1097.1997.tb03180.x

Fiedor L., Rosenbach-Belkin V., Sai M., Scherz A. Plan. Physiol. Biochem. 1996, 34, 393-398.

Scherz A., Salomon Y., Brandis A., Scheer H., 2000, PCT Patent WO00/33833.

Ashur I., Goldschmidt R., Pinkas I., Salomon Y., Szewczyk G., Sarna T., Scherz A. J. Phys. Chem. A 2009, 113, 8027-8037.

https://doi.org/10.1021/jp900580e

Azzouzi A. R., Barret E., Bennet J., Moore C., Taneja S., Muir G., Villers A., Coleman J., Allen C., Scherz A., Emberton M. World J. Urology 2015, 33 , 945-953.

https://doi.org/10.1007/s00345-015-1505-8

Vakrat-Haglili Y., Weiner L., Brumfeld V., Brandis A., Salomon Y., McIlroy B., Wilson B.C., Pawlak A., Rozanowska M., Sarna T., Scherz A. J. Am. Chem. Soc. 2005, 127, 6487-6497.

https://doi.org/10.1021/ja046210j

Sasaki S., Tamiaki H. J. Org. Chem. 2006, 71, 2648-2654.

https://doi.org/10.1021/jo0523969

Mironov A.F., Kozyrev A.N., Brandis A.S. Proc. SPIE 1992, 1922, 204-208.

Fischer H., Lambrecht R., Mittenzwei H.Z. Physiol. Chem. 1939, 1, 253-259.

Hartwich G., Fiedor L., Simonin I., Cmiel E., Schafer W., Noy D., Scherz A., Scheer H. J. Am. Chem. Soc. 1998, 120, 3675-3683.

https://doi.org/10.1021/ja970874u

Kozyrev A.N., Chen Y., Goswami L.N., Tabaczynski W.A., Pandey R.K. J. Org.Chem. 2006, 71, 1949-1960.

https://doi.org/10.1021/jo052334i

Waielewski M.R., Svec W.A. J. Org. Chem. 1980, 45, 1969-1974.

https://doi.org/10.1021/jo01298a043

Chen Y., Potter W.R., Missert J.R., Morgan J., Pandey R.K. Bioconjugate Chem. 2007, 18, 1460-1473.

https://doi.org/10.1021/bc070092i

Saga Y., Ishitani A., Takahashi N., Kawamura K. Bioorg. Med. Chem. Lett. 2015, 25, 639-641.

https://doi.org/10.1016/j.bmcl.2014.12.002

Kozyrev A., Ethirajan, M., Chen P., Ohkubo K., Robinson B.C., Barkigia K.M., Pandey R.K. J. Org. Chem. 2012, 77, 10260-10271.

https://doi.org/10.1021/jo301895p

Kozyrev A.N., Zheng G., Zhu C.F. Tetrahedron Lett. 1996, 37, 6431-6434.

https://doi.org/10.1016/0040-4039(96)01346-9

Pandey R.K., Sumlin A.B., Constantine S., Aoudia M., Potter W.R., Bellnier D.A., Henderson B.W., Rodgers M.A., Smith K.M., Dougherty T.J. Photochem. Photobiol. 1996, 64, 194-204.

https://doi.org/10.1111/j.1751-1097.1996.tb02442.x

Grin M.A., Lonin I.S., Likhosherstov L.M., Novikova O.S., Plyutinskaya A.D., Plotnikova E.A., Kachala V.V., Yakubovskaya R.I., Mironov A.F. J. Porphyrins Phthalocyanines 2012, 16, 1094-1109.

https://doi.org/10.1142/S1088424612500848

Gorshkova A.S., Rumyantseva V.D., Mironov A.F. Fine Chem. Technol. 2018, 13(2), 5-20.

https://doi.org/10.32362/2410-6593-2018-13-2-5-20

Patel N., Pera P., Joshi P., Dukh M., Tabaczynski W.A., Siters K.E., Pandey R.K. J. Med. Chem. 2016, 59, 9774-9787.

https://doi.org/10.1021/acs.jmedchem.6b00890

Plotnikova E.A., Stramova V.O., Morozova N.B., Plyutinskaya A.D., Ostroverkhov P.V., Grin M.A., Mironov A.F., Yakubovskaya R.I., Kaprin A.D. Biomed. Photon. 2019, 8, 18-23.

https://doi.org/10.24931/2413-9432-2019-8-1-18-23

Mironov A.F., Grin M.A., Tsiprovskiy A.G., Kachala V.V., Karmakova T.A., Plyutinskaya A.D., Yakubovskaya R.I. J. Porphyrins Phthalocyanines 2003, 7, 725-730.

https://doi.org/10.1142/S1088424603000902

Mironov A.F., Grin M.A., Tsiprovskiy A.G., Dzardanov D.V., Golovin K.V., Feofanov A.V., 2004, Patent RF No 2223274.

Brusov S.S., Grin M.A., Meerovich G.A., Mironov A.F., Romanova Yu. M., Tiganova I.G., 2017, Patent RF No 2610566.

Pantyushenko I.V., Rudakovskaya P.G., Starovoitova A.V., Mikhailovskaya A.A., Abakumov M.A., Kaplan M.A., Tsigankov A.A., Majouga A.G., Grin M.A., Mironov A.F. Biochemistry 2015, 80, 752-762.

https://doi.org/10.1134/S0006297915060103

Mironov A.F., Grin M.A. J. Porphyrins Phthalocyanines 2008, 12, 1163-1172.

https://doi.org/10.1142/S1088424608000534

Grin M.A., Brittal D.I., Tsiprovskiy A.G., Bregadze V.I., Mironov A.F. Macroheterocycles 2010, 3, 222-227.

https://doi.org/10.6060/mhc2010.4.222

Meerovich I.G., Tsyprovskiy A.G., Meerovich G.A., Barkanova S.V., Borisova L. M., Oborotova N. A., Baryshnikov A.Yu., Mironov A.F. Proc. SPIE 2007, 6427, 64270W1-W9.

Chissov V.I., Yakubovskaya R.I., Mironov A.F., Grin M.A., Plotnikova E.A., Morozova N.B., Tsigankov A.A., 2012, Patent RF No 2521327.

Grin M.A., Filonenko E.V., Mironov A.F., Suvorov N.B., Pankratov A.A., Grigor'evukh N.I., 2020, Patent RF No 2720806.

Aravindu K., Krayer M., Kim H.-J., Lindsey J.S. New J. Chem. 2011, 35, 1376-1384.

https://doi.org/10.1039/c1nj20027e

Senge M.O., Wiehe A., Ryppa C. Adv. Photosynth. Respir. 2006, 25, 27-37.

Lange C., Bednarski P.J. Curr. Pharmac. Design 2016, 22, 6956-6974.

https://doi.org/10.2174/1381612822666161124155344

Pucelik B., Arnaut L.G., Stochel G., Dabrowski J.M. ACS Appl. Mater. Interfaces 2016, 8, 22039-22055.

https://doi.org/10.1021/acsami.6b07031

Karwicka M., Pucelik B., Gonet M., Elas M., Dąbrowski J.M.. Scientific Reports 2019, 9, 12655.

https://doi.org/10.1038/s41598-019-49064-6

Bruhn T., Brückner C. J. Org. Chem. 2015, 80, 4861-4868.

https://doi.org/10.1021/acs.joc.5b00137

Samankumara L.P., Zeller M., Krause J.A., Brückner C. Org. Biomol. Chem. 2010, 8, 1951-1965.

https://doi.org/10.1039/b924539a

Ke X.S., Yang B.Y., Cheng X., Chan S.L.F., Zhang J.L. Chem. Eur. J. 2014, 20, 4324-4333.

https://doi.org/10.1002/chem.201303972

MacGowan S.A., Senge M.O. Chem. Commun. 2011, 47, 11621-11623.

https://doi.org/10.1039/c1cc14686f

MacGowan S.A., Senge M.O. Biochim. Biophys. Acta 2016, 1857, 427-442.

https://doi.org/10.1016/j.bbabio.2016.02.001

Guberman-Pfeffer M.J., Greco J.A., Samankumara L.P., Zeller M., Birge R.R., Gascon J.A., Brückner C. J. Am. Chem. Soc. 2017, 139, 548-560.

https://doi.org/10.1021/jacs.6b12419

Herges R., Peters M.K., 2020, Patent EP 3653226.

Peters M.K., Herges R. Beilstein J. Org. Chem.2017, 13, 2659-2662.

https://doi.org/10.3762/bjoc.13.263

Peters M.K., Röhricht F., Näther C., Herges R. Org. Lett. 2018, 20(24), 7879-7883.

https://doi.org/10.1021/acs.orglett.8b03433

Li G., Graham A., Chen Y., Dobhal M.P., Morgan J., Zheng G., Kozyrev A., Oseroff A., Dougherty T.J., Pandey R.K. J. Med. Chem. 2003, 46, 5349-5359.

https://doi.org/10.1021/jm030341y

Kim H.-J., Lindsey J.S. J. Org. Chem. 2005, 70, 5475-5486.

https://doi.org/10.1021/jo050467y

Krayer M., Ptaszek M., Kim H.-J., Meneely K.R., Fan D., Secor K., Lindsey J.S. J. Org. Chem. 2010, 75, 1016-1039.

https://doi.org/10.1021/jo9025572

Reddy K.R., Lubian E., Pavan M.P., Kim H.-J., Yang E., Holten D., Lindsey J.S. New J. Chem. 2013, 37, 1157-1173.

https://doi.org/10.1039/c3nj41161c

Zhang S., Kim H.-J, Tang Q., Yang E., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2016, 40, 5942-5956.

https://doi.org/10.1039/C6NJ00517A

Liu Y., Lindsey J.S. J. Org. Chem. 2016, 81, 11882−11897.

https://doi.org/10.1021/acs.joc.6b02334

Esemoto N.N., Yu Z., Wiratan L., Satraitis A., Ptaszek M. Org. Lett. 2016, 18, 4590-4593.

https://doi.org/10.1021/acs.orglett.6b02237

Bennion M.C., Burch M.A., Dennis D.G., Lech M.E., Neuhaus K., Fendler N.L., Parris M.R., Cuadra J.E., Dixon C.F., Mukosera G.T., Blauch D.N., Hartmann L., Snyder N.L., Ruppel, J.V. Eur. J. Org. Chem. 2019, 2019, 6496-6503.

https://doi.org/10.1002/ejoc.201901128

Ogata F., Nagaya T., Maruoka Y., Akhigbe J., Meares A., Lucero M.Y., Satraitis A., Fujimura D., Okada R., Inagaki F., Choyke P.L., Ptaszek M., Kobayashi H. Bioconjugate Chem. 2019, 30, 169-183.

https://doi.org/10.1021/acs.bioconjchem.8b00820

Ballatore M.B., Milanesio M.E., Fujita H., Lindsey J.S., Durantini E.N. J. Biophotonics 2020, 13, e201960061.

https://doi.org/10.1002/jbio.201960061

Jiang J., Taniguchi M., Lindsey J.S. New J. Chem. 2015, 39, 4534-4550.

https://doi.org/10.1039/C5NJ00209E

Vairaprakash P., Yang E., Sahin T., Taniguchi M., Krayer M., Diers J.R., Wang A., Niedzwiedzki D.M., Kirmaier C., Lindsey J.S., Bocian D.F., Holten D. J. Phys. Chem. B 2015, 119, 4382-4395.

https://doi.org/10.1021/jp512818g

Krayer M., Yang E., Diers J.R., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2011, 35, 587-601.

https://doi.org/10.1039/c0nj00771d

Fujita H., Jing H., Krayer M., Allu S., Veeraraghavaiah G., Wu Z., Jiang J., Diers J.R., Magdaong N.C.M., Mandal A.K., Roy A., Niedzwiedzki D.M., Kirmaier C., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2019, 43, 7209-7232.

https://doi.org/10.1039/C9NJ01113G

Zhang S., Lindsey J.S. J. Org. Chem. 2020, 82, 2489-2504.

https://doi.org/10.1021/acs.joc.6b02878

Woodward R.B., Ayer W.A. Beaton J.M., Bickelhaupt F., Bonnett R., Buchschacher P., Closs G.L., Dutler H., Hannah J., Hauck F.P., Itô S., Langemann A., Le Goff E., Leimgruber W., Lwowski W., Sauer J., Valenta Z., Volz H. J. Am. Chem. Soc. 1960, 82, 3800−3802.

https://doi.org/10.1021/ja01499a093

Woodward R.B. Pure Appl. Chem. 1961, 2, 383−404.

https://doi.org/10.1351/pac196102030383

Liu M., Chen C.-Y., Hood D., Taniguchi M., Diers J.R., Bocian D.F., Holten D., Lindsey J.S. New J. Chem. 2017, 41, 3732-3744.

https://doi.org/10.1039/C6NJ04135C

van Straten D., Mashayekhi V., de Bruijn H.S., Oliveira S., Robinson D. J. Cancers (Basel) 2017, 9, 1-54.

https://doi.org/10.3390/cancers9020019

Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B.C., Golab J. Cancer J. Clin. 2017, 61, 250-281.

https://doi.org/10.3322/caac.20114

Babilas P., Schreml S., Landthaler M., Szeimies R.-M. Photodermatol. Photoimmunol. Photomed. 2010, 26, 118-132.

https://doi.org/10.1111/j.1600-0781.2010.00507.x

Kharkwal G.B., Sharma S.K., Huang Y.Y., Dai T., Hamblin M.R. Lasers Surg. Med. 2011, 43, 755-767.

https://doi.org/10.1002/lsm.21080

Allison R.R., Sibata C.H. Photodiagnosis Photodyn. Ther. 2010, 7, 61-75.

https://doi.org/10.1016/j.pdpdt.2010.02.001

Knap B., Przystupski D., Saczko J., Ewa K., Knap-czop K., Kotli J., Michel O., Kotowski K. Kulbacka J. 2018, 106, 1098-1107.

https://doi.org/10.1016/j.biopha.2018.07.049

Zhang J., Jiang C., Paulo J., Longo F., Bentes R., Zhang H., Alexandre L. Acta Pharm. Sin. B 2018, 8, 137-146.

https://doi.org/10.1016/j.apsb.2017.09.003

Cai L., Gu Z., Zhong J., Wen D., Chen G., He L., Wu J., Gu Z. Drug Discov. Today 2018, 23, 1126-1138.

https://doi.org/10.1016/j.drudis.2018.02.009

Yoo J., Park C., Yi G., Lee D., Koo H. Cancers (Basel) 2019, 11, 640.

https://doi.org/10.3390/cancers11050640

Chen F., Huang G., Huang H. Future Med. Chem. 2020, 12, 161-171.

https://doi.org/10.4155/fmc-2019-0114

Kang B., Opatz T., Landfester K., Wurm F.R. Chem. Soc. Rev. 2015, 44, 8301-8325.

https://doi.org/10.1039/C5CS00092K

Zhao K., Li D., Shi C., Ma X., Rong G., Kang H., Wang X., Sun B. Curr. Drug Deliv. 2016, 13, 494-499.

https://doi.org/10.2174/156720181304160521004609

Lee E., Lee J., Lee I.-H., Yu M., Kim H., Chae S.Y., Jon S. J. Med. Chem. 2008, 51, 6442-6449.

https://doi.org/10.1021/jm800767c

Khatun Z., Nurunnabi M., Reeck G.R., Cho K.J., Lee Y. J. Control. Release 2013, 170, 74-82.

https://doi.org/10.1016/j.jconrel.2013.04.024

Hyung Park J., Kwon S., Lee M., Chung H., Kim J.-H., Kim Y.-S., Park R.-W., Kim I.-S., Bong Seo S., Kwon I. C., Young Jeong S. Biomaterials 2006, 27, 119-126.

https://doi.org/10.1016/j.biomaterials.2005.05.028

Park J.H., Cho Y.W., Son Y.J., Kim K., Chung H., Jeong S.Y., Choi K., Park C.R., Park R.-W., Kim I.-S., Kwon I.C. Colloid Polym. Sci. 2006, 284, 763-770.

https://doi.org/10.1007/s00396-005-1438-7

Voszka I., Galántai R., Maillard P., Csík G. J. Photochem. Photobiol. B Biol. 1999, 52, 92-98.

https://doi.org/10.1016/S1011-1344(99)00107-4

Kaldapa C., Blais J.C., Carré V., Granet R., Sol V., Guilloton M., Spiro M., Krausz P. Tetrahedron Lett. 2000, 41, 331-335.

https://doi.org/10.1016/S0040-4039(99)02085-7

Davoust E., Granet R., Krausz P., Carré V., Guilloton M. Tetrahedron Lett. 1999, 40, 2513-2516.

https://doi.org/10.1016/S0040-4039(99)00259-2

Oulmi D., Maillard P., Guerquin-Kern J.L., Huel C., Momenteau M. J. Org. Chem. 1995, 60, 1554-1564.

https://doi.org/10.1021/jo00111a013

Sol V., Blais J.C., Carré V., Granet R., Guilloton M., Spiro M., Krausz P. J. Org. Chem. 1999, 64, 4431-4444.

https://doi.org/10.1021/jo982499+

Kuzmina N.S., Otvagin V.F., Krylova L.V., Nyuchev A.V., Romanenko Y.V., Koifman O.I., Balalaeva I.V., Fedorov A.Y. Mendeleev Commun. 2020, 30, 159-161.

https://doi.org/10.1016/j.mencom.2020.03.009

Pandey S.K., Zheng X., Morgan J., Missert J.R., Liu T.H., Shibata M., Bellnier D.A., Oseroff A.R., Henderson B.W., Dougherty T.J., Pandey R.K. Mol. Pharm. 2007, 4, 448-464.

https://doi.org/10.1021/mp060135x

Laville I., Figueiredo T., Loock B., Pigaglio S., Maillard P., Grierson D.S., Carrez D., Croisy A., Blais J. Bioorg. Med. Chem. 2003, 11, 1643-1652.

https://doi.org/10.1016/S0968-0896(03)00050-6

Laville I., Pigaglio S., Blais J.C., Loock B., Maillard P., Grierson D.S., Blais J. Bioorg. Med. Chem. 2004, 12, 3673-3682.

https://doi.org/10.1016/j.bmc.2004.04.022

Bautista-Sanchez A., Kasselouri A., Desroches M.C., Blais J., Maillard P., de Oliveira D.M., Tedesco A.C., Prognon P., Delaire J. J. Photochem. Photobiol. B Biol. 2005, 81, 154-162.

https://doi.org/10.1016/j.jphotobiol.2005.05.013

Silva S., Pereira P.M.R., Silva P., Almeida Paz F.A., Faustino M.A.F., Cavaleiro J.A.S., Tomé J.P.C. Chem. Commun. 2012, 48, 3608-3610.

https://doi.org/10.1039/c2cc17561d

Pereira P.M.R., Silva S., Bispo M., Zuzarte M., Gomes C., Girão H., Cavaleiro J.A.S., Ribeiro C.A.F., Tomé J.P.C., Fernandes R. Bioconjugate Chem. 2016, 27, 2762-2769.

https://doi.org/10.1021/acs.bioconjchem.6b00519

Liu F., Rabinovich G.A. Nat. Rev. Cancer 2005, 5, 29-41.

https://doi.org/10.1038/nrc1527

Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Biochim. Biophys. Acta 2015, 1855, 235-247.

https://doi.org/10.1016/j.bbcan.2015.03.003

Yang F., Zhang Y., Liang H. Int. J. Mol. Sci. 2014, 15, 3580-3595.

https://doi.org/10.3390/ijms15033580

D'Auria S., Petrova L., John C., Russev G., Varriale A., Bogoeva V. Mol. Biosyst. 2009, 5, 1331-1336.

https://doi.org/10.1039/b905921k

Tannock I.F., Rotin D. Cancer Res. 1989, 49, 4373-4384.

Huber V., Camisaschi C., Berzi A., Ferro S., Lugini L., Triulzi T., Tuccitto A., Tagliabue E., Castelli C., Rivoltini L. Semin. Cancer Biol. 2017, 43, 74-89.

https://doi.org/10.1016/j.semcancer.2017.03.001

Lee E.S., Kim D., Youn Y.S., Oh K.T., Bae Y.H. Angew. Chem. Int. Ed. 2008, 47, 2418-2421.

https://doi.org/10.1002/anie.200704121

Biscaglia F., Gobbo M. Pept. Sci. 2018, 110, e24038.

https://doi.org/10.1002/pep2.24038

Almeida-Marrero V., Van De Winckel E., Anaya-Plaza E., Torres T., De La Escosura A. Chem. Soc. Rev. 2018, 47, 7369-7400.

https://doi.org/10.1039/C7CS00554G

Lin Y., Zhou T., Bai R., Xie Y. J. Enzyme Inhib. Med. Chem. 2020, 35, 1080-1099.

https://doi.org/10.1080/14756366.2020.1755669

Ranyuk E., Cauchon N., Klarskov K., Guérin B., Van Lier J.E. J. Med. Chem. 2013, 56, 1520-1534.

https://doi.org/10.1021/jm301311c

Bullous A.J., Alonso C.M.A., Boyle R.W. Photochem. Photobiol. Sci. 2011, 10, 721-750.

https://doi.org/10.1039/c0pp00266f

Zhu L., Liu J., Zhou G., Ng H.M., Ang I.L., Ma G., Liu Y., Yang S., Zhang F., Miao K., Poon T.C.W., Zhang X., Yuan Z., Deng C.X., Zhao Q. Chem. Commun. 2019, 55, 14255-14258.

https://doi.org/10.1039/C9CC06839B

Picarda E., Ohaegbulam K.C., Zang X. Clin. Cancer Res. 2016, 22, 3425-3431.

https://doi.org/10.1158/1078-0432.CCR-15-2428

Teunissen A.J.P., Pérez-Medina C., Meijerink A., Mulder W.J.M. Chem. Soc. Rev. 2018, 47, 7027-7044.

https://doi.org/10.1039/C8CS00278A

Zheng G., Chen J., Stefflova K., Jarvi M., Li H., Wilson B.C. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8989-8994.

https://doi.org/10.1073/pnas.0611142104

Overall C.M., Kleifeld O. Nat. Rev. Cancer 2006, 6, 227-239.

https://doi.org/10.1038/nrc1821

Bolze F., Jenni S., Sour A., Heitz V. Chem. Commun. 2017, 53, 12857-12877.

https://doi.org/10.1039/C7CC06133A

Kobayashi H., Ogawa M., Alford R., Choyke P. L., Urano Y. Chem. Rev. 2010, 110, 2620-2640.

https://doi.org/10.1021/cr900263j

Collins H.A., Khurana M., Moriyama E.H., Mariampillai A., Dahlstedt E., Balaz M., Kuimova M.K., Drobizhev M., Yang V.X.D., Phillips D., Rebane A., Wilson B.C., Anderson H.L. Nat. Photonics 2008, 2, 420-424.

https://doi.org/10.1038/nphoton.2008.100

Ke H., Wang H., Wong W.K., Mak N.K., Kwong D.W.J., Wong K.L., Tam H.L. Chem. Commun. 2010, 46, 6678-6680.

https://doi.org/10.1039/c0cc01848a

Poon C.T., Chan P.S., Man C., Jiang F.L., Wong R.N.S., Mak N.K., Kwong D.W.J., Tsao S.W., Wong W.K. J. Inorg. Biochem. 2010, 104, 62-70.

https://doi.org/10.1016/j.jinorgbio.2009.10.004

Ke M., Chen S., Peng X., Zheng Q., Zheng B., Yeh C., Huang J. Eur. J. Med. Chem. 2017, 127, 200-209.

https://doi.org/10.1016/j.ejmech.2016.12.056

Abu-Surrah A., Kettunen M. Curr. Med. Chem. 2006, 13, 1337-1357.

https://doi.org/10.2174/092986706776872970

Brunner H., Schellerer K.M. Monatsh. Chem. 2002, 133, 679-705.

https://doi.org/10.1007/s007060200041

Lottner C., Bart K. C., Bernhardt G., Brunner H. J. Med. Chem. 2002, 45, 2064-2078.

https://doi.org/10.1021/jm0110688

Lottner C., Knuechel R., Bernhardt G., Brunner H. Cancer Lett. 2004, 203, 171-180.

https://doi.org/10.1016/j.canlet.2003.09.001

Bio M., Rajaputra P., Nkepang G., Awuah S.G., Hossion A.M.L., You Y. J. Med. Chem. 2013, 56, 3936-3942.

https://doi.org/10.1021/jm400139w

Rajaputra P., Bio M., Nkepang G., Thapa P., Woo S., You Y. Bioorg. Med. Chem. 2016, 24, 1540-1549.

https://doi.org/10.1016/j.bmc.2016.02.025

Bio M., Rajaputra P., Nkepang G., You Y. J. Med. Chem. 2014, 57, 3401-3409.

https://doi.org/10.1021/jm5000722

Thapa P., Li M., Bio M., Rajaputra P., Nkepang G., Sun Y., Woo S., You Y. J. Med. Chem. 2016, 59, 3204-3214.

https://doi.org/10.1021/acs.jmedchem.5b01971

Zhou X.Q., Meng L.B., Huang Q., Li J., Zheng K., Zhang F.L., Liu J.Y., Xue J.P. ChemMedChem 2015, 10, 304-311.

https://doi.org/10.1002/cmdc.201402401

Tomanová P., Rimpelová S., Jurášek M., Buděšínský M., Vejvodová L., Ruml T., Kmoníčková E., Drašar P. B. Steroids 2015, 97, 8-12.

https://doi.org/10.1016/j.steroids.2014.08.024

Tuncel S., Trivella A., Atilla D., Bennis K., Savoie H., Albrieux F., Delort L., Billard H., Dubois V., Ahsen V., Caldefie-Chézet F., Richard C., Boyle R.W., Ducki S., Dumoulin F. Mol. Pharm. 2013, 10, 3706-3716.

https://doi.org/10.1021/mp400207v

Zhao X., Ma H., Chen J., Zhang F., Jia X., Xue J. Eur. J. Med. Chem. 2019, 182, 111625.

https://doi.org/10.1016/j.ejmech.2019.111625

Otvagin V.F., Kuzmina N.S., Krylova L.V., Volovetsky A.B., Nyuchev A.V., Gavryushin A.E., Meshkov I.N., Gorbunova Y.G., Romanenko Y.V., Koifman O.I., Balalaeva I.V., Fedorov A.Y. J. Med. Chem. 2019, 62, 11182-11193.

https://doi.org/10.1021/acs.jmedchem.9b01294

Maisch T., Eichner A., Späth A., Gollmer A., König B., Regensburger J., Bäumler W. PLOS ONE 2014, 1-18.

https://doi.org/10.1371/journal.pone.0111792

Wainwright M., Maisch T., Nonell S., Plaetzer K., Almeida A., Tegos G.P., Hamblin M.R. Lancet Infect Dis. 2017, 17(2), e49-e55.

https://doi.org/10.1016/S1473-3099(16)30268-7

Yao L., Rong Q., Zaat S.A.J., Breukink E., Heger M. J. Clin. Transl. Res. 2015, 1(3), 140-167.

https://doi.org/10.18053/jctres.201503.002

Hamblin M.R. Curr. Opin. Microbiol. 2016, 33, 67-73.

https://doi.org/10.1016/j.mib.2016.06.008

Huang L., Dai T., Hamblin M.R. Antimicrobial Photodynamic Inactivation and Photodynamic Therapy for Infections. In: Photodynamic Therapy. Methods and Protocols (Gomer C.J., Ed.) New York: Springer, 2010. p. 155-174.

https://doi.org/10.1007/978-1-60761-697-9_12

Kustov A.V., Smirnova N.L., Berezin M.B. Thermochim. Acta 2011, 521, 224-226.

https://doi.org/10.1016/j.tca.2011.02.020

Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. J. Chem. Thermodyn. 2015, 89, 123-126.

https://doi.org/10.1016/j.jct.2015.05.016

Berezin D.B., Karimov D.R., Venediktov E.A., Kustov A.V., Makarov V.V., Romanenko Y.V. Macroheterocycles 2015, 8(4), 384-388.

https://doi.org/10.6060/mhc151088b

Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. J. Chem. Thermodyn. 2015, 83, 104-109.

https://doi.org/10.1016/j.jct.2014.12.013

Kustov A.V., Garas'ko E.V., Belykh D.V., Khudyaeva I.S., Startseva O.M., Makarov V.V., Strel'nikov A.I., Berezin D.B. Usp. Sovrem. Estestvozn. 2016, 12, 263-268. (in Russ.).

https://doi.org/10.17513/use.36297

Kustov A.V., Belykh D.V., Smirnova N.L., Khudyaeva I.S., Berezin D.B. J. Chem. Thermodyn. 2017, 115, 302-306.

https://doi.org/10.1016/j.jct.2017.07.031

Kustov A.V., Antonova O.A., Smirnova N.L., Khudyaeva I.S., Belykh D.V., Berezin D.B. Thermochim. Acta 2018, 669, 169-172.

https://doi.org/10.1016/j.tca.2018.09.022

Kustov A.V., Belykh D.V., Smirnova N.L., Venediktov E.A., Kudayarova T.V., Kruchin S.O., Berezin D.B. Dyes and Pigments 2018, 149, 553-559.

https://doi.org/10.1016/j.dyepig.2017.09.073

Berezin D.B., Kustov A.V., Krestyaninov M.A., Shukhto O.V., Batov D.V., Kukushkina N.V. J. Mol. Liq. 2019, 283, 532-536.

https://doi.org/10.1016/j.molliq.2019.03.091

Kustov A.V., Kustova T.V., Belykh D.V., Khudyaeva I.S., Berezin D.B. Dyes and Pigments 2020, 173, 107948.

https://doi.org/10.1016/j.dyepig.2019.107948

Berezin D.B., Makarov V.V., Znoyko S.A., Mayzlish V.E., Kustov A.V. Mend. Commun. 2020, 30, 621-623.

https://doi.org/10.1016/j.mencom.2020.09.023

Kustov A.V., Belykh D.V., Startseva O.M., Kruchin S.O., Venediktov E.A., Berezin D.B. Pharm. Anal. Acta 2016, 7(5), 480-484.

https://doi.org/10.4172/2153-2435.1000480

Yakavets I., Millard M., Zorin V., Lassalle H.-P., Bezdetnaya L. J. Contr. Release 2019, 304, 268-287.

https://doi.org/10.1016/j.jconrel.2019.05.035

Smith D.A., Van de Waterbeemd H., Walker D.K., Mannhold R., Kubinyi H., Timmerman H. Pharmacokinetics and Metabolism on Drug Design. In: Methods and Principles in Medicinal Chemistry (Mannhold R., Kubinyi H., Timmerman H., Eds.) Weinheim: Wiley-VCH Verlag, 2001. 141 p.

Fromm-Dornieden C., Rembe J.D., Schäfer N., Böhm J., Stuermer E.K. J. Med. Microbiol. 2015, 64(4), 407-414.

https://doi.org/10.1099/jmm.0.000034

Venediktov E.A., Tulikova E.Yu., Rozhkova E.P., Belykh D.V., Khudyaeva I.S., Berezin D.B. Macroheterocycles 2017, 10(3), 295-300.

https://doi.org/10.6060/mhc170404v

Dabrowski J.M. Adv. Inorg. Chem. 2017, 70, 343-394.

https://doi.org/10.1016/bs.adioch.2017.03.002

Schwartzberg L.S., Navari R.M. Adv. Ther. 2018, 35(6), 754-767.

https://doi.org/10.1007/s12325-018-0707-z

Mahmood M.E., Al-Koofee D.A.F. Global J. Sc. Front. Res. Chem. 2013, 13(4), 1-7.

Kustov A.V., Berezin D.B., Koifman O.I. Antimicrobial and Antiviral Photodynamic Therapy: Mechanisms, Targets and Prospects for Clinical Applications. In: Functional Materials Based on Tetrapyrrole Macrocyclic Compounds (Koifman O.I., Ed.) Moscow: Lenand, 2019. p. 532-581. (in Russ.).

Drulis-Kawa Z., Bednarkiewicz A., Bugla G., Stręk W., Doroszkiewicz W. Adv. Clin. Exp. Med. 2006, 15(2), 279-283.

Isakau H.A., Parkhats M.V., Knyukshto V.N., Dzhagarov B.M., Petrov E.P., Petrov P.T. J. Photochem. Photobiol. B: Biol. 2008, 92, 165-174.

https://doi.org/10.1016/j.jphotobiol.2008.06.004

Hamblin M.R., Hasan T. Photochem. Photobiol. Sci. 2004, 3(5), 436-450.

https://doi.org/10.1039/b311900a

Bertoloni G., Rossi F., Valduga G., Jori G., Ali H., van Lier J.E. Microbios 1992, 71(286), 33-46.

Lambrechts S.A.G., Demidova T.N., Aalders M.C.G. Photochem. Photobiol. Sci. 2005, 4, 503.

https://doi.org/10.1039/b502125a

Awad М.М., Tovmasyan A., Craik J.D., Batinic-Haberle I., Benov L.T. Appl. Microbiol. Biotechnol. 2016, 100, 7679-7688.

https://doi.org/10.1007/s00253-016-7632-3

Geynits A.V., Sorokaty A.E., et al. Laser Medicine 2007, 1(3), 45.

Gostishchev V.K. General Surgery. Moscow: GEOTAR-MEDIA, 2016. 736 p.

Briskin B.S., Proshin A.V., Lebedev V.V., Yakobishvili Ya.I. Infections in Surgery 2003, 1(4), 11-1.

Hamblin M.R., Abrahamse H. Antibiotics (Basel) 2020, 9(2), E53.

https://doi.org/10.3390/antibiotics9020053

Hamblin M.R., Dai T. Photodiagnosis Photodyn Ther. 2010, 7(2), 134-136.

https://doi.org/10.1016/j.pdpdt.2010.04.004

Sharma S.K., Dai T., Kharkwal G.B., Huang Y.Y., Huang L., De Arce V.J., Tegos G.P., Hamblin M.R. Curr. Pharm. Des. 2011, 17(13), 1303-1319.

https://doi.org/10.2174/138161211795703735

St Denis T.G., Dai T., Izikson A., Astrakas C., Anderson R.R., Hamblin M.R., Tegos G.P. Virulence 2011, 2(6), 509-520..

https://doi.org/10.4161/viru.2.6.17889

Cacaccio J., Durrani F., Cheruku R.R., Borah B., Ethirajan M., Tabaczynski W., Pera P., Missert J.R., Pandey R.K. Photochem. Photobiol. 2020, 96, 625-635.

https://doi.org/10.1111/php.13183

Jenkins S.V., Srivatsan A., Reynolds K.Y., Gao F., Zhang Y., Heyes C.D., Pandey R.K., Chen J. J. Colloid Interface Sci. 2016, 461, 225-231..

https://doi.org/10.1016/j.jcis.2015.09.037

Srivatsan A., Pera P., Joshi P., Wang Y., Missert J.R., Tracy E.C., Tabaczynski W.A., Yao R., Sajjad M., Baumann H., Pandey R.K. Bioorg. Med. Chem. 2015, 23, 3603-17. PMID 25936263.

https://doi.org/10.1016/j.bmc.2015.04.006

Grandi V., Bacci S., Corsi A., Sessa M., Puliti E., Murciano N., Scavone F., Cappugi P., Pimpinelli N. Photodiagn. Photodyn. Therapy 2018, 21, 252-256.

https://doi.org/10.1016/j.pdpdt.2017.12.012

Akhlyustina E.V. J. Physics: Conf. Series 2019, 1189.

https://doi.org/10.1088/1742-6596/1189/1/012033

Kurochkina A.Yu., Plavsky V.Yu., Yudina N.A. Med. J. 2010, 2, 131-133.

Casas A., Fukuda H., Di Venosa G., Batlle A. Br. J. Cancer 2001, 85(2), 279-284.

https://doi.org/10.1054/bjoc.2001.1875

Zeina B., Greenman J., Corry D., Purcell W.M. Br. J. Dermatol. 2002, 146, 568-573.

https://doi.org/10.1046/j.1365-2133.2002.04623.x

Stranadko E.F., Kuleshov I.Yu., Karakhan G.I. Laser Medicine 2010, 14(2), 52-56.

Shin F.E., Tolstykh P.I., Stranadko E.F., Solovieva A.B., Ivanov A.V., Eliseenko V.I., Mamantov P.G., Shin E.F., Kuleshov I.Yu. Laser Medicine 2009, 3-4, 55-60.

Malik Z., Ladan H., Nitzan Y., Smetana Z. Antimicrobal and Antiviral Activity of Porphyrin Photosensitation. In: Photodynamic Therapy of Cancer (Jori G., Moan J., Star W., Eds.) Proc. SPIE 2078, 1994. p. 305-312.

https://doi.org/10.1117/12.168668

Pаolo L.R., Segalla A., Bertoloni G., et al. J. Photochem. Photobiol. 2000, 59(1-3), 152-158.

https://doi.org/10.1016/S1011-1344(01)00114-2

Kato I.T., Prates R.A., Sabino C.P., Fuchs B.B., Tegos G.P., Mylonakis E., Hamblin M.R., Ribeiro M.S., Antimicrob. Agents Chemother. 2013, 57(1), 445-451.

https://doi.org/10.1128/AAC.01451-12

Jori G., Brown S.B. Photochem. Photobiol. Sci. 2004, 3, 403-405.

https://doi.org/10.1039/b311904c

Dai T., Fuchs B.B., Coleman J.J., Prates R.A., Astrakas C., St. Denis T., Ribeiro M.S., Mylonakis E., Hamblin M.R., Tegos G.P. Front. Microbiol. 2012, 120..

https://doi.org/10.3389/fmicb.2012.00120

Jori J. J. Environ. Path. Toxcol. Oncol. 2006, 25, 505-519.

https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.320

Vera D.M., Haynes M.H., Ball A.R., Dai D.T., Astrakas C., Kelso M.J., Hamblin M.R., Tegos G.P. Photochem. Photobiol. 2012, 88(3), 499-511.

https://doi.org/10.1111/j.1751-1097.2012.01087.x

Wilson B.C. In: Handbook of Photonics for Biomedical Science (Tuchin V.V., Ed.). London: CRC Press, Taylor & Francis Group, 2010. p. 649-686.

Harris F., Pierpoint L. Med. Res. Rev. 2012, 32(6), 1292-327.

https://doi.org/10.1002/med.20251

Li X., Guo H., Tian Q., Zheng G., Hu Y., Fu Y., Tan H. J. Surg. Res. 2013, 184(2), 1013-21.

https://doi.org/10.1016/j.jss.2013.03.094

Wozniak A., Grinholc M. Front Microbiol. 2018, 9, 930.

https://doi.org/10.3389/fmicb.2018.00930

Grinholc M., Nakonieczna J., Fila G., Taraszkiewicz A., Kawiak A., Szewczyk G., Sarna T., Lilge L., Bielawsk K.P. Appl. Microbiol. Biotechnol. 2015, 99(9), 4031-4043.

https://doi.org/10.1007/s00253-015-6539-8

Hamblin M.R. Photochem. Photobiol. 2012, 88(3), 496-8.

https://doi.org/10.1111/j.1751-1097.2012.01139.x

Thota S., Wang M., Jeon S., Maragani S., Hamblin M.R., Chiang L.Y. Molecules 2012, 17(5), 5225-43.

https://doi.org/10.3390/molecules17055225

Malik Z., Hanania J., Nitzan Y. J. Photochem. Photobiol. B 1990, 5, 281-293.

https://doi.org/10.1016/1011-1344(90)85044-W

Stranadko E.F., Koraboev U.M., Tolstykh M.P. Surgery 2000, 9, 67-70.

Lu Z.R., Ye F., Vaidya A. J. Control. Release 2007, 122, 269-277.

https://doi.org/10.1016/j.jconrel.2007.06.016

Knop K., Mingotaud A.-F., El-Akra N., Violleau F., Souchard J.-P. Photochem. Photobiol. Sci. 2009, 8, 396-404.

https://doi.org/10.1039/b811248g

Nitzan Y., Gutterman M., Malik Z., Ehrenberg B. Photochem. Photobiol. 1992, 55(1), 89-96.

https://doi.org/10.1111/j.1751-1097.1992.tb04213.x

Strakhovskaya M.G., Belenikina N.S., Nikitina V.V., Kovalenko S.Yu., Kovalenko I.B., Averyanov A.V., Rubin A.B., Galochkina T.V. Clinical Practice 2013, 4(1), 25-30.

https://doi.org/10.17816/clinpract4125-30

Loke W.K., Lau S.K., Yong L.L., Khor E. Sum C.K. J. Biomed. Mater. Res. 2000, 53(1), 8.

https://doi.org/10.1002/(SICI)1097-4636(2000)53:1<8::AID-JBM2>3.0.CO;2-3

Muzzarelli R.A.A., Morganti P., Morganti G., Palombo P., Palombo M., Biagini G., Belmonte M.M., Giantomassi F., Orlandi F., Muzzarelli C. Carbohydrate Polymers 2007, 70(3), 27434.

https://doi.org/10.1016/j.carbpol.2007.04.008

Aoyagi S., Onishi H., Machida Y. Int. J. Pharm. 2007, 330(1-2), 138-45.

https://doi.org/10.1016/j.ijpharm.2006.09.016

Solak E.K., Kaya S. J. Gazi University Health Sciences 2020, 2(1), 11-17.

Zhientaev T.M., Melik-Nubarov N.S., Litmanovich E.A., Aksenova N.A., Glagolev N.N., Solovieva A.B. Polymer Science, Ser. A 2009, 5, 757-767.

Solovieva А.B., Melik-Nubarov N.S., Zhiyentayev Т.М., Tolstih P.I., Kuleshov I.I., Aksenova N.A., Litmanovich E.A., Glagolev N.N., Timofeeva V.А., Ivanov A.V. Laser Physics 2009, 19(4), 1-8.

https://doi.org/10.1134/S1054660X09040410

Solovieva A.B., Glagolev N.N., Ivanov A.V., Konoplyannikov A.G., Melik-Nubarov N.S., Rogovina S.Z., Zhientaev T.M. An Agent for the Treatment of Malignant tumors by the Method of Photodynamic Therapy, 2008, RF patent No 2314806.

Gorokh Yu.A., Aksenova N.A., Solovieva A.B., Olshevskaya V.A., Zaitsev A.V., Lagutina M.A., Luzgina V.N., Mironov A.F., Kalinin V.N. Russ. J. Phys. Chem., A 2011, 85, 871-875.

https://doi.org/10.1134/S003602441105013X

Solovieva A.B., Tolstykh P.I., Ivanov A.V., Glagolev N.N., Shinn F.E., Kuleshov I.Yu. A Method of Treating Extensive Purulent Wounds of Soft Tissues, 2010, RF patent No 2396994.

Huang L., Xuan Y., Koide Y., Zhiyentayev T., Tanaka M., Hamblin M.R. Lasers Surg. Med. 2012, 44(6), 490-9.

https://doi.org/10.1002/lsm.22045

Wagner J.R., Ali H., Langlois R., Brasseur N., van Lier J.E. Photochem. Photobiol. 1987, 45(5), 587-594.

https://doi.org/10.1111/j.1751-1097.1987.tb07384.x

Aksenova N.A., Oles T., Sarna T., Glagolev N.N., Chernjak A.V., Volkov V.I., Kotova S.L., Melik-Nubarov N.S., Solovieva A.B. Laser Physics 2012, 22(10), 1642-1649.

https://doi.org/10.1134/S1054660X12100015

Solovieva A.B., Tolstih P.I., Melik-Nubarov N.S., Zhientaev T.M., Kuleshov I.G., Glagolev N.N., Ivanov A.V., Karahanov G.I., Tolstih M.P., Timashev P.S. Laser Phyics 2010, 5, 1068-1074.

https://doi.org/10.1134/S1054660X10090203

Aksenova N.A., Zhientaev T.M., Brilkina A.A., Dubasova L.V., Ivanov A.V., Timashev P.S., Melik-Nubarov N.S., Solovieva A.B. Photonics & Lasers in Medicine 2013, 2(3), 189-198.

https://doi.org/10.1515/plm-2013-0011

Zhiyentayev T.M., Boltaev U.T., Solov'eva A.B., Aksenova N.A., Glagolev N.N., Chernjak A.V., Melik-Nubarov N.S. Photochem. Photobiol. 2014, 90, 171-182.

https://doi.org/10.1111/php.12181

Tsvetkov V.B., Solov'eva A.B., Melik-Nubarov N.S. Phys. Chem. Chem. Phys. 2014, 16, 10903-10913.

https://doi.org/10.1039/C3CP55510K

Rudenko T.G., Shekhter A.B., Guller A.E., Aksenova N.A., Glagolev N.N., Ivanov A.V., Aboyants R.K., Kotova S.L., Solovieva A.B. Photochem. Photobiol. 2014, 90, 1413-1422.

https://doi.org/10.1111/php.12340

Solovieva A.B., Kardumian V.V., Aksenova N.A., Belovolova L.V., Glushkov M.V., Bezrukov E.A., Sukhanov R.B., Kotova S.L., Timashev P.S. Sci. Rep. 2018, 8, 8042.

https://doi.org/10.1038/s41598-018-26458-6

Fontana C.R., dos Santos D.S. Jr., Bosco J.M., Spolidorio D.M., Marcantonio R.A. Drug Deliv. 2008, 15(7), 417-422.

https://doi.org/10.1080/10717540802007433

Aksenova N.A., Timofeeva V.A., Rogovina S.Z., Timashev P.S., Glagolev N.N., Solovieva A.B. Polymer Science, Series B 2010, 52(2), 122-128.

https://doi.org/10.1134/S1560090410010100

Glagolev N.N., Rogovina S.Z., Solov'eva A.B., Aksenova N.A., Kotova S.L. Russ. J. Phys. Chem. 2006, 80, Suppl. 1., S72-S76.

https://doi.org/10.1134/S0036024406130127

Kardumyan V.V., Aksenova N.A., Chernyak A.A., Glagolev N.N., Volkov V.I., Solovieva A.B. Laser Phys. 2015, 25(4), 6002.

https://doi.org/10.1088/1054-660X/25/4/046002

Solovieva A.B., Spokoiny A.L., Rudenko T.G., Shekhter A.B., Glagolev N.N., Aksenova N.A. Clinical Practice 2016, 2, 45-49.

https://doi.org/10.17816/clinpract7245-49

Tolstykh P.I., Shin F.E., Tamrazova O.B., Derbenev V.A., Kuleshov I.Yu., Solovieva A.B., Vasyagin S.N. Military Medical J. 2010, 8, 41.

Rushai A.K., Makarenko A.V., Bodachenko K.A., Kolosova T.A. Clinical Medicine 2013, 14(4), 101-104.

Drexler H. Cardiovasc Res. 1999, 43, 572-579.

https://doi.org/10.1016/S0008-6363(99)00152-2

Shumaev K.B., Gubkin A.A., Gubkina S.A., Gudkov L.L., Sviryaeva I.V., Timoshin A.A., Topunov A.F., Vanin A.F., Ruuge E.T.O. Biophysics 2006, 51(3), 472-477.

https://doi.org/10.1134/S0006350906030134

Santos C.X.C., Anilkumar N., Zhang M., Brewer A.C., Shah A.M. Free Radical Biology & Medicine 2011, 50(7), 777-793.

https://doi.org/10.1016/j.freeradbiomed.2011.01.003

Murray J., Taylor S.W., Zhang В., Ghosh S.S., Capaldi R.A. J. Biol. Chem. 2003, 278(39), 37223-37230.

https://doi.org/10.1074/jbc.M305694200

Vanin A.F. Biochemistry 1998, 63, 924-938.

Mironov A.F. Photodynamic Therapy for Cancer. In: Advances in the Chemistry of Porphyrins. Vol. 1. (Golubchikov O.A., Ed.) SPb.: St-PbGU, 1997. p. 357-374

Solovieva A.B., Vanin A.F., Shekhter A.B., Glagolev N.N., Aksenova N.A., Mikoyan V.D., Kotova S.L., Rudenko T.G., Fayzullin A.L., Timashev P.S. Nitric Oxide 2019, 83, 24-32.

https://doi.org/10.1016/j.niox.2018.12.004

Davies A.G. Tin Organometallics. In: Comprehensive Organometallic Chemistry. Vol. 3. London: Elsevier, 2007. p. 809-883.

https://doi.org/10.1016/B0-08-045047-4/00054-6

Desai A., Mitchison T.J. Ann. Rev. Cell. Dev. Biol. 1997, 13, 83-117.

https://doi.org/10.1146/annurev.cellbio.13.1.83

Milaeva E.R., Shpakovsky D.B., Gracheva Y.A., Antonenko T.A., Osolodkin D.I., Palyulin V.A., Shevtsov P.N., Neganova M.E., Vinogradova D.V., Shevtsova E.F. J. Organomet. Chem. 2015, 782, 96-102.

https://doi.org/10.1016/j.jorganchem.2014.12.013

Milaeva E., Petrosyan V., Berberova N., Pimenov Y., Pellerito L. Bioinorg. Chem. Appl. 2004, 18, 69-91.

https://doi.org/10.1155/S1565363304000068

Benedetti M, Giuliani M.E., Regoli F. Ann. NY Acad. Sci. 2015, 1340, 8-19.

https://doi.org/10.1111/nyas.12698

Aschner M., Aschner J.L. Neurosc. Biobehav. Rev. 1992, 16, 427-435.

https://doi.org/10.1016/S0149-7634(05)80184-8

Milaeva E.R., Tyurin V.Yu., Gracheva Yu.A., Dodochova M.A., Pustovalova L.M., Chernyshev V.N. Bioinorg. Chem. Appl. 2006, Article ID 64927, 1-5.

https://doi.org/10.1155/BCA/2006/64927

Tyurin V.Yu., Zhang J., Glukhova A.P., Milaeva E.R. Macroheterocycles 2011, 4, 211-212.

https://doi.org/10.6060/mhc2011.3.10

Milaeva E.R., Tyurin V.Yu., Shpakovsky D.B., Gerasimova O.A., Zhang J., Gracheva Yu.A. Heteroatom Chem. 2006, 17, 475-480.

https://doi.org/10.1002/hc.20269

Forman H.J., Zhang H., Rinna A. Mol. Aspects Med. 2009, 30, 1-12.

https://doi.org/10.1016/j.mam.2008.08.006

Cappellini M.D., Fiorelli G. Lancet 2008, 371, 9606, 64-74.

https://doi.org/10.1016/S0140-6736(08)60073-2

Levy H.R., Christoff M. Biochem J. 1983, 214, 959-965.

https://doi.org/10.1042/bj2140959

Milgrom L.R., Jones C.C., Harriman A. J. Chem. Soc. Perkin Trans. 1988, 2, 71-79.

https://doi.org/10.1039/p29880000071

Gerbec E.N., Messing R.D., Starber S.B. Brain Res. Bull. 1988, 346-351.

https://doi.org/10.1016/0006-8993(88)90379-4

Steckelbroeck S., Stoffel-Wagner B., Reichelt R., Schramm J., Bidlingmaier F., Siekmann L., Klingmuller D. J. Neuroendocrinol. 1999, 11, 457-464.

https://doi.org/10.1046/j.1365-2826.1999.00363.x

Pashkov A.N., Popov S.S., Semenikhina A.V., Rakhmanova T.I. Bull. Experim. Biol. Med. 2005, 139, 520-524.

https://doi.org/10.1007/s10517-005-0346-7

Sedlak J., Lindsey R.H. Anal. Biochem. 1968, 2, 192-205.

https://doi.org/10.1016/0003-2697(68)90092-4

Geloso M.C., Corvino V., Cavallo V., Toesca A., Guadagni E., Passalacqua R., Michetti F. Neurosci. Lett. 2004, 357, 103-107.

https://doi.org/10.1016/j.neulet.2003.11.076

Kook S.C., Wong K., Ng Meng, Kumar Das V.G. Appl. Organomet. Chem. 1991, 5, 409-415.

https://doi.org/10.1002/aoc.590050507

Bosch B.J., van der Zee R., de Haan C.A.M., Rottier P.J.M. J. Virol. 2003, 77, 8801-8811.

https://doi.org/10.1128/JVI.77.16.8801-8811.2003

Lu R., Zhao X., Li J. et al. The Lancet 2020, 395, 565-574.

https://doi.org/10.1016/S0140-6736(20)30251-8

Hoffmann M., Kleine-Weber H., Schroeder S., et al. Cell 2020, 2, 271-280.

https://doi.org/10.1016/j.cell.2020.02.052

Xu X., Chen P., Wang J., Feng J., et al. Science China Life Sciences 2020, 63, 457-460.

https://doi.org/10.1007/s11427-020-1637-5

Wan Y., Shang J., Graham R., et al. J. Virol. 2020, 94, e00127-20.

https://doi.org/10.1128/JVI.00127-20

Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Intensive Care Medicine 2020, 46, 586-590.

https://doi.org/10.1007/s00134-020-05985-9

Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Science 2020, 361(6485), 1444-1448.

https://doi.org/10.1126/science.abb2762

Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Am. J. Respir. Critical Care Med. 2020, 202, 756-759.

https://doi.org/10.1164/rccm.202001-0179LE

Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. Antiviral Res. 2020, 176(104742), 1-5.

https://doi.org/10.1016/j.antiviral.2020.104742

Matsuyama S., Nao N, Shirato K., et al. Proc. Nat. Acad. Sci. USA 2020, 117(13), 7001-7003.

https://doi.org/10.1073/pnas.2002589117

Kawase M., Shirato K., van der Hoek L., Taguchi F., Matsuyama S. J. Virol. 2012, 86(12), 6537-6545.

https://doi.org/10.1128/JVI.00094-12

Zhou Y., Vedantham P., Lu K., et al. Antiviral Res. 2015, 116, 76-84.

https://doi.org/10.1016/j.antiviral.2015.01.011

Kuba K., Imai Y., Rao S., et al. Nat. Med. 2005, 11, 875-879.

https://doi.org/10.1038/nm1267

Monteil V., Kwon H., Prado P., et al. Cell 2020, 181(4), 905-913.

https://doi.org/10.1016/j.cell.2020.04.004

Gheblawi M., Wang K., Viveiros A., et al. Circ. Res. 2020, 126, 1456-1474.

https://doi.org/10.1161/CIRCRESAHA.120.317015

Jiang S., Hillyer C., Du L. Trends in Immunology 2020, 5, 355-359.

https://doi.org/10.1016/j.it.2020.03.007

Wang C., Li W., Drabek D. et al. Nat. Commun. 2020, 11, 2251.

https://doi.org/10.1038/s41467-020-16256-y

Widjaja I., Wang C., Haperen R., et al. Emerg. Microbes Infect. 2019, 8, 516-530.

https://doi.org/10.1080/22221751.2019.1597644

Hwang W.C., Lin Y., Santelli E., et al. J. Biol. Chem. 2006, 281, 34610-34616.

https://doi.org/10.1074/jbc.M603275200

Pedersen S.F., Ho Y.-C. J. Clin. Invest. 2020, 130(5), 2202-2205.

https://doi.org/10.1172/JCI137647

Woo Y.L., Kamarulzaman A., Augustin Y., Staines H., Altice F. J. Petrol. 2020. DOI: 10.31219/osf.io/mxsvw.

https://doi.org/10.31219/osf.io/mxsvw

Bussalino E., Maria A. De, Russo R., et al. Am. J. Transplant. 2020, 7, 1922-1924.

https://doi.org/10.1111/ajt.15920

Sarzi-Puttini P., Giorgi V., Sirotti S., Marotto D., et al. Clinical and Experimental Rheumatology 2020, 38(2), 337-342.

Wu C., Liu Y., Yang Y., et al. Acta Pharm. Sin. B 2020, 10(5), 766-788.

https://doi.org/10.1016/j.apsb.2020.02.008

Smith M., Smith J. ChemRxiv 2020. DOI: 10.26434/chemrxiv.11871402.

https://doi.org/10.26434/chemrxiv.11871402

Lebedeva N., Popova T., Kozbial M., et al. J. Porphyrins Phthalocyanines 2011, 15(4), 223-229.

https://doi.org/10.1142/S1088424611003185

Lebedeva N.S., Gubarev Y.A., Koifman O.I. Mendeleev Commun. 2015, 25, 307-309.

https://doi.org/10.1016/j.mencom.2015.07.027

Lebedeva N., Malkova E., Vyugin A. Koifman O., Gubarev Y. Biochip J. 2016, 10, 1-8.

https://doi.org/10.1007/s13206-016-0101-3

Walls A.C., Park Y.J., Tortorici M.A., et al. Cell 2020, 181(2), 281-292.

https://doi.org/10.1016/j.cell.2020.02.058

Frisch M.J., Trucks G.W., Schlegel H.B., et al. Gaussian Inc., Wallingford 2013, 121, 150-166.

Trott O., Olson A.J. J. Comput. Chem. 2010, 31(2), 455-461.

https://doi.org/10.1002/jcc.21334

Syrbu S.A., Semeikin A.S., Berezin B.D., Koifman O.I. Khimiya Geterociklicheskih Soedineniy 1989, 10, 1373-1377.

Koifman O.I., Ponomarev G.V., Syrbu S.A., Zharov E.V., Sergeeva T.V., Lukovkin A.V., 2014, Patent RF No 2535097.

Kruper W.J., Chamberlin Jr.T.A., Kochanny M. J. Org. Chem. 1989, 11, 2753-2756.

https://doi.org/10.1021/jo00272a057

Sharma K.K., Mandloi M., Rai N., Jain R. RSC Adv. 2016, 6, 96762-96767.

https://doi.org/10.1039/C6RA23364C

van den Tempel N., Horsman M.R., Kanaar R. International Journal of Hyperthermia 2016, 32, 446-454.

https://doi.org/10.3109/02656736.2016.1157216

Mallory M., Gogineni E., Jones G.C., Greer L., Simone II C.B. Crit. Rev. Oncol. Hematol. 2016, 97, 56-64.

https://doi.org/10.1016/j.critrevonc.2015.08.003

Kumar V., Marin-Navarro J., Shukla P. World J. Microbiol. Biotechnol. 2016, 32, 34.

https://doi.org/10.1007/s11274-015-2005-0

Issels R.D., Lindner L.H., Verweij J., Wessalowski R., Reichardt P., Wust P., Ghadjar P., Hohenberger P., Angele M., Salat C. JAMA Oncology 2018, 4, 483-492.

https://doi.org/10.1001/jamaoncol.2017.4996

Cihoric N., Tsikkinis A., van Rhoon G., Crezee H., Aebersold D.M., Bodis S., Beck M., Nadobny J., Budach V., Wust P. International Journal of Hyperthermia 2015, 31, 609-614.

https://doi.org/10.3109/02656736.2015.1040471

Matsumura M., Signor G., Matthews B.W. Nature 1989, 342, 291.

https://doi.org/10.1038/342291a0

Zhang S., Zhang K., Chen X., Chu X., Sun F., Dong Z. Biochem. Biophys. Res. Commun. 2010, 395, 200-206.

https://doi.org/10.1016/j.bbrc.2010.03.159

Joo J.C., Pack S.P., Kim Y.H., Yoo Y.J. J. Biotechnol. 2011, 151, 56-65.

https://doi.org/10.1016/j.jbiotec.2010.10.002

Ahern T.J., Casal J.I., Petsko G.A., Klibanov A.M. Proc. Nat. Acad. Sci. 1987, 84, 675-679.

https://doi.org/10.1073/pnas.84.3.675

Buß O., Rudat J., Ochsenreither K. Comput. Struct. Biotech. J. 2018, 16, 25-33.

https://doi.org/10.1016/j.csbj.2018.01.002

Glick B.R., Pasternak J.J., Patten C.L. Molecular Biotechnology: Principles and Applications of Recombinant DNA, 4th ed, Washington, DS:ASM PRESS, 2010. 1000 p.

Wlodarczyk S.R., Custódio D., Pessoa Jr.A., Monteiro G. Eur. J. Pharm. Biopharm. 2018, 131, 92-98.

https://doi.org/10.1016/j.ejpb.2018.07.019

Fields P.A. Comp. Biochem. Physiol. Part A: Molecular & Integrative Physiology 2001, 129, 417-431.

https://doi.org/10.1016/S1095-6433(00)00359-7

Vieille C., Zeikus G.J. Microbiol. Mol. Biol. Rev. 2001, 65, 1-43.

https://doi.org/10.1128/MMBR.65.1.1-43.2001

Bonch-Osmolovskaya E., Miroshnichenko M., Kostrikina N., Chernych N., Zavarzin G. Arch Microbiol. 1990, 154, 556-559.

https://doi.org/10.1007/BF00248836

Haney P.J., Badger J.H., Buldak G.L., Reich C.I., Woese C.R., Olsen G.J. Proc. Nat. Acad. Sci. 1999, 96, 3578-3583.

https://doi.org/10.1073/pnas.96.7.3578

Chakravarty S., Varadarajan R. FEBS Lett. 2000, 470, 65-69.

https://doi.org/10.1016/S0014-5793(00)01267-9

Empadinhas N., da Costa M.S. Int. Microbiol. 2006, 9(3), 199-206.

Kaur P., Ghai N., Sangha M.K. African J. Biotech. 2009, 8, 619-625.

Bursy J., Kuhlmann A.U., Pittelkow M., Hartmann H., Jebbar M., Pierik A.J., Bremer E. Appl. Environ. Microbiol. 2008, 74, 7286-7296.

https://doi.org/10.1128/AEM.00768-08

Fischer D., Geyer A., Loos E. The FEBS J. 2006, 273, 137-149.

https://doi.org/10.1111/j.1742-4658.2005.05050.x

Faria T.Q., Mingote A., Siopa F., Ventura R., Maycock C., Santos H. Carbohydr. Res. 2008, 343, 3025-3033.

https://doi.org/10.1016/j.carres.2008.08.030

Grigoryan K., Markarian S., Aznauryan M. Problems of Cryobiology and Cryomedicine 2009, 19, 3-10.

Timasheff S.N. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 67-97.

https://doi.org/10.1146/annurev.bb.22.060193.000435

Timasheff S.N. Biochemistry 2002, 41, 13473-13482.

https://doi.org/10.1021/bi020316e

Liu Y., Bolen D. Biochemistry 1995, 34, 12884-12891.

https://doi.org/10.1021/bi00039a051

Michels J.J., Fiammengo R., Timmerman P., Huskens J., Reinhoudt D.N. J. Inclusion Phenom. Macrocycl. Chem. 2001, 41, 163-172.

https://doi.org/10.1023/A:1014488423489

Raffaini G., Ganazzoli F. J. Inclusion Phenom. Macrocycl. Chem. 2013, 76, 213-221.

https://doi.org/10.1007/s10847-012-0193-x

Arakawa T., Bhat R., Timasheff S.N. Biochemistry 1990, 29, 1914-1923.

https://doi.org/10.1021/bi00459a036

Barone G., Capasso S., Del Vecchio P., De Sena C., Fessas D., Giancola C., Graziano G., Tramonti P. J. Therm. Anal. Calorim. 1995, 45, 1255-1264.

https://doi.org/10.1007/BF02547420

Barone G., Giancola C., Verdoliva A. Thermochim. Acta 1992, 199, 197-205.

https://doi.org/10.1016/0040-6031(92)80263-V

Farruggia B., Rodriguez F., Rigatuso R. J. Protein Chem. 2001, 20, 81-89.

https://doi.org/10.1023/A:1011000317042

Lebedeva N., Malkova E., Gubarev Y., V'yugin A., Borisov A. Int. J. Org. Chem. 2013, 3, 225-228.

https://doi.org/10.4236/ijoc.2013.34031

Wang S.-L., Lin S.-Y., Li M.-J., Wei Y.-S., Hsieh T.-F. Biophys Chem. 2005, 114, 205-212.

https://doi.org/10.1016/j.bpc.2004.12.004

Itoh T., Wada Y., Nakanishi T. Agric. Biol. Chem. 1976, 40, 1083-1086.

https://doi.org/10.1080/00021369.1976.10862172

Baier S.K., McClements D.J. J. Agric. Food Chem. 2003, 51, 8107-8112.

https://doi.org/10.1021/jf034249m

Yamasaki M., Yano H., Aoki K. Int. J. Biol. Macromol. 1991, 13, 322-328.

https://doi.org/10.1016/0141-8130(91)90012-J

Baier S.K., McClements D.J. Food Res Int. 2003, 36, 1081-1087.

https://doi.org/10.1016/j.foodres.2003.09.003

Michnik A. J. Therm. Anal. Calorim. 2003, 71, 509-519.

https://doi.org/10.1023/A:1022851809481

Tankovskaia S.A., Abrosimova K.V., Paston S.V. J. Mol. Struct. 2018, 1171, 243-252.

https://doi.org/10.1016/j.molstruc.2018.05.100

Michnik A., Drzazga Z. J. Therm. Anal. Calorim. 2007, 88, 449-454.

https://doi.org/10.1007/s10973-006-8072-6

Das A., Basak P., Pattanayak R., Kar T., Majumder R., Pal D., Bhattacharya A., Bhattacharyya M., Banik S. P. Int. J. Biol. Macromol. 2017, 105, 645-655.

https://doi.org/10.1016/j.ijbiomac.2017.07.074

Samanta N., Mahanta D.D., Hazra S., Kumar G.S., Mitra R.K. Biochimie 2014, 104, 81-89.

https://doi.org/10.1016/j.biochi.2014.05.009

Baier S., McClements D.J. J. Agric. Food Chem. 2001, 49, 2600-2608.

https://doi.org/10.1021/jf001096j

Platts L., Falconer R.J. Int. J. Pharm. 2015, 486, 131-135.

https://doi.org/10.1016/j.ijpharm.2015.03.051

Shil S., Das N., Sengupta B. Sen P. ACS Omega 2018, 3, 16633-16642.

https://doi.org/10.1021/acsomega.8b01832

Dasgupta M., Kishore N. PloS one 2017, 12, e0172208.

https://doi.org/10.1371/journal.pone.0172208

Lebedeva N.S., Gubarev Y.A., Lyubimtsev A.V., Yurina E.S., Koifman O.I. Macroheterocycles 2017, 10, 37-42.

https://doi.org/10.6060/mhc160530g

Lebedeva N.S., Gubarev Y.A., Yurina E.S., Syrbu S.A. J. Mol. Liq. 2018, 265, 664-667.

https://doi.org/10.1016/j.molliq.2018.06.030

Lebedeva N.S., Malkova E., Popova T., Kutyrev A., Syrbu S., Parfenyuk E., Vyugin A. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 118, 395-398.

https://doi.org/10.1016/j.saa.2013.06.101

Lebedeva N.S., Yurina E.S., Guseinov S.S., Gubarev Y.A, Syrbu S.A. Dyes Pigments 2019, 162, 266-271.

https://doi.org/10.1016/j.dyepig.2018.10.034

Опубликован
2021-01-28
Как цитировать
Койфман, О., Агеева, Т., Белецкая, И., & другие, и. (2021). Макрогетероциклические соединения – ключевое звено в создании новых функциональных материалов и молекулярных устройств. Макрогетероциклы/Macroheterocycles, 13(4), 311-467. извлечено от https://mhc-isuct.ru/article/view/3286
Раздел
Макрогетероциклы