Конъюгаты цинкового комплекса тетраметилпиридилпорфирина с коллоидными наночастицами золота, стабилизированными цитратом
Аннотация
При электростатическом взаимодействии коллоидных наночастиц Au30900/Cit с цинковым комплексом 5,10,15,20-тетракис(4’-N-метилпиридил)порфина друг за другом образуются два различных наноконъюгата постоянного состава со спектрами поглощения, отличными от спектров исходных реагентов. Образование первого, более прочного, соединения сопровождается падением интенсивности и красным сдвигом полос Соре и поверхностного плазмонного резонанса (ППР) конъюгированных реагентов, которые сохраняют свою спектральную идентичность. Образование второго конъюгата сопровождается ростом интенсивности полосы Соре, в то время как полоса ППР практически не меняется. Высказано предположение о том, что первым образуется наноконъюгат только с одним тетракатионом, который понижает способность наночастицы к дальнейшей конъюгации.
Литература
Konan Y.N., Gurny R., Allemann E. J. Photochem. Photobiol. B 2002, 66, 89-106.
https://doi.org/10.1016/S1011-1344(01)00267-6
Baek S.Y., Na K. J. Porphyrins Phthalocyanines 2013, 17, 125-134
https://doi.org/10.1142/S1088424612501386
Vaishnavi E., Renganathan R. Analyst 2014, 139, 225-234
https://doi.org/10.1039/C3AN01871G
Wei Y., Zhou F., Zhang D., Chen Q., Xing D. Nanoscale 2016, 8, 3530-3538
https://doi.org/10.1039/C5NR07785K
Sheinin V.B., Kulikova O.M., Lipatova I.M., Yusova A.A., Koifman O.I. Dyes Pigm. 2018, 155, 42-50
https://doi.org/10.1016/j.dyepig.2018.03.026
Amos-Tautua B.M., Songca S.P., Oluwafemi O.S. Molecules 2019, 24, 2456-2484
https://doi.org/10.3390/molecules24132456
Kirar S., Thakur N.S., Laha J.K., Banerjee U.C. ACS Appl. Bio Mater. 2019, 2, 4202−4212
https://doi.org/10.1021/acsabm.9b00493
Khurana R., Kakatkar A.S., Chatterjee S., Barooah N., Kunwar A., Bhasikuttan A.C., Mohanty J. Front. Chem. 2019, 7, 452.
https://doi.org/10.3389/fchem.2019.00452
Savacini Sagrillo F., Dias C., Gomes A.T.P.C., Faustino M.A.F., Almeida A., de Souza A.G., Pinto Costa A.R., da Costa Santos Boechat F., de Souza M.C.B.V., Neves M.G.P.M.S., Cavaleiro J.A.S. Photochem. Photobiol. Sci. 2019, 18, 1910-1922.
https://doi.org/10.1039/C9PP00102F
Singh S., Aggarwal A., Bhupathiraju N.V.S.D.K., Arianna G., Tiwari K., Drain M. C. Chem. Rev. 2015, 115, 10261−10306.
https://doi.org/10.1021/acs.chemrev.5b00244
Kataoka H., Nishie H., Hayashi N., Tanaka M., Nomoto A., Yano S., Joh T. Ann. Transl. Med. 2017, 5, 183.
https://doi.org/10.21037/atm.2017.03.59
Hong E.J., Choi D. G., Shim M. S. Acta Pharmaceutica Sinica B ,2016, 6, 297-307.
https://doi.org/10.1016/j.apsb.2016.01.007
Kou J., Dou D., Yang L. Oncotarget. 2017, 8, 81591-81603.
https://doi.org/10.18632/oncotarget.20189
Chen J.-J., Gao L.-J., Liu T.-J. Oncol Lett. 2016, 11, 775-781.
https://doi.org/10.3892/ol.2015.3953
Yang N., Tanner J. A., Wang Z., Huang J.-D., Zheng B.-J., Zhua N., Sun H. Chem. Commun. 2007, 42, 4413-4415.
https://doi.org/10.1039/b709515e
Gorshkova A.S., Rumyantseva V.D., Mironov A.F. Fine Chemical Technologies 2018, 13, 5-20.
https://doi.org/10.32362/2410-6593-2018-13-2-5-20
Alves E., Costa L., Carvalho C. M.B., Tomé J.P.C., Faustino M. A, Neves M. G.P.M.S., Tomé A. C, Cavaleiro J.AS, Cunha Â., Almeida A. BMC Microbiology 2009, 9, 70.
https://doi.org/10.1186/1471-2180-9-70
Rybachuk G. V. Doctoral Dissertations LSU: Baton Rouge, LA, 2009, 2545.
Vzorov A.N., Dixon D.W., Trommel J.S., Marzilli L.G., Compans, R.W. Antimicrob Agents Chemother 2002, 46, 3917-3925
https://doi.org/10.1128/AAC.46.12.3917-3925.2002
Vzorov A.N., Marzilli L.G., Compans R.W., Dixon D.W. Antiviral Res. 2003, 59, 99-109
https://doi.org/10.1016/S0166-3542(03)00035-4
Kundu S., Patra A. Chem. Rev. 2017, 117, 712-757
https://doi.org/10.1021/acs.chemrev.6b00036
Ibraheam A.S., Al-Douri Y., Voon C.H., Foo K.L., Azizah N., Gopinath S.C.B., Ameri M., Ibrahim S.S. Appl. Phys. A 2017, 123, 200.
https://doi.org/10.1007/s00339-017-0838-0
Safi M., Domitrovic T., Kapur A., Zhan N., Aldeek F., Johnson J.E., Mattoussi H.. Bioconjugate Chem. 2017, 28, 64−74.
https://doi.org/10.1021/acs.bioconjchem.6b00609
Achadu O. J., Nyokong T. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 174, 339-347.
https://doi.org/10.1016/j.saa.2016.11.043
Smykalla L., Mende C., Fronk M., Siles P.F., Hietschold M., Salvan G., Zahn D.R.T., Schmidt O.G., Rüffer T., Lang H. Beilstein J. Nanotechnol. 2017, 8, 1786-1800
https://doi.org/10.3762/bjnano.8.180
Srivastava S.K., Mittal V. Hybrid Nanomaterials: Advances in Energy, Environment, and Polymer Nanocomposites. Scrivener Publishing: Wiley, USA. 2017, 500 p
https://doi.org/10.1002/9781119160380
Comprehensive Supramolecular Chemistry II, 2nd Edition (Atwood J., Ed.), Elsevier: New York 2017. 4568 p.
Ermakova E., Meshkov I., Enakieva Yu., Zvyagina A., Ezhov A., Mikhailov A., Gorbunova Yu., Chernyshev A., Kalinina M., Arslanov V. Surface Science 2017, 660, 39-46.
https://doi.org/10.1016/j.susc.2017.02.007
Huang H-C, Barua S, Sharma G, Dey SK, Rege K. J. Controlled Release 2011, 155, 344-357
https://doi.org/10.1016/j.jconrel.2011.06.004
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J. Controlled Release 2015; 200, 138-157
https://doi.org/10.1016/j.jconrel.2014.12.030
Safari J, Zarnegar Z. J. Saudi Chem. Soc. 2014, 18, 85-99
https://doi.org/10.1016/j.jscs.2012.12.009
Li W., Cao Z., Liu R., Liu L., Li H., Li X., Chen Y., Lu C., Liu Y. Artificial Cells, Nanomedicine, and Biotechnology 2019, 47, 4222-4233
https://doi.org/10.1080/21691401.2019.1687501
Du J.Z., Li H.J., Wang J. Acc Chem Res. 2018, 51, 2848-2856.
https://doi.org/10.1021/acs.accounts.8b00195
Melamed J.R., Riley R.S., Valcourt D.M., et al. ACS Nano 2016, 10, 10631-10635.
https://doi.org/10.1021/acsnano.6b07673
Sood R., Chopra D.S. Materials Sci. Eng. C, Mater. 2018, 92, 575-589.
https://doi.org/10.1016/j.msec.2018.06.070
Tang Y., Liang J., Wu A., et al. ACS Appl. Mater. Interfaces. 2017, 9, 26648-26664.
https://doi.org/10.1021/acsami.7b05292
Al-Dhabi N.A., Ghilan A.M., Arasu M.V., et al. J. Photochem. Photobiol. B, Biol. 2018, 189, 176-184.
https://doi.org/10.1016/j.jphotobiol.2018.09.012
Pompa P.P., Martiradonna L. et al. Nature Nanotechnology 2006, 1, 126-130.
https://doi.org/10.1038/nnano.2006.93
Gamaleia N.F., Shton I.O. Photodiagnosis and Photodynamic Therapy 2015, 12, 221-231
https://doi.org/10.1016/j.pdpdt.2015.03.002
Shibu E.S., Hamada M., Murase N., et al. J. Photochem. Photobiol, C: Photochem. Rev. 2013, 15, 53-72.
https://doi.org/10.1016/j.jphotochemrev.2012.09.004
Kim S.B., Lee T.H., Yoon I. et al. Chem. Asian J. 2015, 10, 563-567.
https://doi.org/10.1002/asia.201403193
Moeno S., Antunes E., Nyokong T. J. Photochem. Photobiol. A: Chem. 2011, 222, 343-50.
https://doi.org/10.1016/j.jphotochem.2011.07.007
Wieder M.E., Hone D.C., Cook M.J. et al. Photochem. Photobiol. Sci. 2006, 5, 727-734.
https://doi.org/10.1039/B602830F
Camerin M., Magaraggia M., Soncin M. et al. Eur. J. Cancer 2010, 46, 1910-1918.
https://doi.org/10.1016/j.ejca.2010.02.037
Stuchinskaya T., Moreno M., Cook M.J. et al. Photochem. Photobiol. Sci. 2011, 10, 822-831.
https://doi.org/10.1039/c1pp05014a
Cheng Y., Samia A.C., Meyers J.D. et al. J. Am. Chem. Soc. 2008, 130, 10643-10647.
https://doi.org/10.1021/ja801631c
Cheng Y., Meyers J.D., Agnes R.S, et al. Small 2011, 7, 2301-2306.
https://doi.org/10.1002/smll.201100628
Cheng Y., Doane T.L., Chuang C.H., et al. Small 2014, 10, 1799-1804.
https://doi.org/10.1002/smll.201303329
Terentyuk G., Panfilova E., Khanadeev V., et al. Nano Res. 2014, 7, 325-337.
https://doi.org/10.1007/s12274-013-0398-3
Zhao T., Yu K., Li L., et al. ACS Appl. Mater. Interfaces 2014, 6, 2700-2708.
https://doi.org/10.1021/am405214w
Gamaleia N.F., Shishko E.D., Shton I.O., et al. Photobiol. Photomed. 2012, 9, 94-98
Gamaleia N.F., Dolinsky G.A, Shishko E.D, et al. Forum Immunopathol Dis Therap 2011, 2, 237-246.
https://doi.org/10.1615/ForumImmunDisTher.2011004235
Zhou Y, Liang X, Dai Z. Nanoscale 2016, 8, 12394-12405
https://doi.org/10.1039/C5NR07849K
Hambright P., Gore T., Burton M. Inorg. Chem. I976, 15, 2314-2315.
https://doi.org/10.1021/ic50163a072
Sugata S., Yamanouchi S., Matsushima Y. Chem. Pharm. Bull. 1977, 25, 884-889.
https://doi.org/10.1248/cpb.25.884
Bailey S.L., Hambright P. Inorg. Chim. Acta 2003, 344, 43-48.
https://doi.org/10.1016/S0020-1693(02)01323-3
Ishikawa Y., Yamakawa N., Uno T. Bioorg. Med. Chem. 2007, 15, 5230-5238.
https://doi.org/10.1016/j.bmc.2007.05.018
Frens G. Nature: Phys. Sci. 1973, 241, 20-22.
https://doi.org/10.1038/physci241020a0
Panteleev A.V., Vavulin D.N., Alfimov A.V., Andreeva O.V., Aryslanova E.M., Chivilikhin S.A. Nanosystems: Physics, Chemistry, Mathematics [Наносистемы: Физика, Химия, Математика] 2012, 3, 123-133 (in Russ.).
Sheinin V.B., Kulikova O.M., Koifman O.I. J. Mol. Liq. 2019, 277, 397-408
https://doi.org/10.1016/j.molliq.2018.12.105
Haiss W., Thanh N.T.K., Aveyard J. Anal Chem. 2007, 79, 14215-4221
https://doi.org/10.1021/ac0702084
Rahman S. Undergraduate Journal of Mathematical Modeling: One + Two 2016, 7(1), art. 2.
Holec D., Dumitraschkewitz P., Vollath D., Fischer F.D. Nanomaterials 2020, 10, 484.
https://doi.org/10.3390/nano10030484
Goldberg R.N., Kishore N., Lennen R.M. J. Phys. Chem. Ref. Data 2002, 31, 231-370.
https://doi.org/10.1063/1.1416902
Silva A.M.N., Kong X., Hider R.C. Biometals 2009, 22, 771-778.
https://doi.org/10.1007/s10534-009-9224-5
Park J.-W., Shumaker-Parry J.S. J. Am. Chem. Soc. 2014, 136, 1907−1921.
https://doi.org/10.1021/ja4097384
Al-Johani H., Abou-Hamad E., Jedidi A., Widdifield C.M., Viger-Gravel J., Sangaru S.S. Basset J.-M. Nature Chemistry 2017, 9, 890-895
https://doi.org/10.1038/nchem.2752
Park J.-W. Part. Syst. Charact. 2019, 36, 1800329. 1-9.
https://doi.org/10.1002/ppsc.201800329
Contreras-Trigo B., Díaz-García V., Guzmán-Gutierrez E., Sanhueza I., Coelho P., Godoy S., Torres S., Oyarzún P. Sensors 2018, 18, 2246
https://doi.org/10.3390/s18072246
Toma H.E., Zamarion V.M., Toma S.H., Araki K. J. Brazilian Chem. Soc. 2010, 21, 1158-1176.
https://doi.org/10.1590/S0103-50532010000700003
Mikros E., Gaudemer A., Pasternack R. Inorg. Chim. Acta 1988, 153, 199-200.
https://doi.org/10.1016/S0020-1693(00)88867-2
Hambright P., Fleisher E. B. Inorg. Chem. 1970, 9, 1757-1761.
https://doi.org/10.1021/ic50089a030
Shang J., Gao X. Chem. Soc. Rev. 2014, 43, 7267-7278.
https://doi.org/10.1039/C4CS00128A
Sheinin V.B., Kulikova O., Zenkevich E.I., Selyshchev O., Dzhagan V., Stroyuk A., Raevskaya A., Koifman O.I., Zahn D.R.T. Abstracts of 1st Int. Conferences on Noncovalent Interactions (ICNI-2019), September 1-6, 2019, Lisbon, Portugal, P.82