meso-Expanded Co(III)triarylcorroles with One to Three Nitrophenyl Moieties: Synthesis, Characterization and Tunable Electrochemical Catalysis

DOI: 10.6060/mhc214017a

  • Xu Liang

Аннотация

To find the effect of electron distribution on the molecules on electrocatalysis performance, we have rationally synthesized three cobalt corrole molecules with different numbers of nitrophenyl groups at the periphery. The electron withdrawing nitrophenyl substituents alter the electron localization of the molecules, thus leading to variation in spectroscopy and electrochemistry of the cobalt corroles. The hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction have been investigated using different solutions, showing that Cor-N1 is best for HER while Cor-N2 is most suitable for OER.

Литература

Zhang W., Lai W., Cao R. Chem. Rev. 2016, 117, 3717-3797. https://doi.org/10.1021/acs.chemrev.6b00299

Liang X., Qiu Y., Zhang X., Zhu W. Dalton Trans. 2020, 49, 3326-3332. https://doi.org/10.1039/C9DT04917G

Zhao D., Zhuang Z., Cao X., Zhang C., Peng Q., Chen C., Li Y. Chem. Soc. Rev. 2020, 49, 2215-2264. https://doi.org/10.1039/C9CS00869A

Pan Y., Sun K., Liu S., Cao X., Wu K., Cheong W.-C., Chen Z., Wang Y., Li Y., Liu Y. J. Am. Chem. Soc. 2018, 140, 2610-2618. https://doi.org/10.1021/jacs.7b12420

Attatsi I.K., Zhong H., Du J., Zhu W., Li M., Liang X. Inorg. Chim. Acta 2020, 503, 119398. https://doi.org/10.1016/j.ica.2019.119398

Nie Y., Li L., Wei Z. Chem. Soc. Rev. 2015, 44, 2168-2201. https://doi.org/10.1039/C4CS00484A

Attatsi I.K., Zhu W., Liang X. Inorg. Chim. Acta. 2020, 507, 119584.

https://doi.org/10.1016/j.ica.2020.119584

Wang N., Zheng H., Zhang W., Cao R. Chin. J. Catal. 2018, 39, 228-244. https://doi.org/10.1016/S1872-2067(17)63001-8

Lin H., Hossain M.S., Zhan S.-Z., Liu H.-Y., Si L.-P. Appl. Organomet. Chem. 2020, 34, e5583. https://doi.org/10.1002/aoc.5583

Sahoo N.G., Pan Y., Li L., Chan S.H. Adv. Mater. 2012, 24, 4203-4210. https://doi.org/10.1002/adma.201104971

Faber M.S., Jin S. Energy Env. Sci. 2014, 7, 3519-3542. https://doi.org/10.1039/C4EE01760A

Wang M., Chen L., Sun L. Energy Environ. Sci. 2012, 5, 6763-6778. https://doi.org/10.1039/c2ee03309g

Galán‐Mascarós J.R. ChemElectroChem. 2015, 2, 37-50. https://doi.org/10.1002/celc.201402268

Meng J., Lei H., Li X., Qi J., Zhang W., Cao R. ACS Catal. 2019, 9, 4551-4560. https://doi.org/10.1021/acscatal.9b00213

Paolesse R., Mini S., Sagone F., Boschi T., Jaquinod L., Nurco D.J., Smith K.M. Chem. Commun. 1999, 1307-1308. https://doi.org/10.1039/a903247i

Gross Z., Galili N., Saltsman I. Angew. Chem. Int. Ed. 1999, 38, 1427-1429. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1427::AID-ANIE1427>3.0.CO;2-1

Levy N., Mahammed A., Kosa M., Major D.T., Gross Z., Elbaz L. Angew. Chem. Int. Ed. 2015, 54, 14080-14084. https://doi.org/10.1002/anie.201505236

Kumar A., Sujesh S., Varshney P., Paul A., Jeyaraman S. Dalton Trans. 2019, 48, 11345-11351. https://doi.org/10.1039/C9DT02339A

Yuan H.-Q., Wang H.-H., Kandhadi J., Wang H., Zhan S.-Z., Liu H.-Y. Appl. Organomet. Chem. 2017, 31, e3773. https://doi.org/10.1002/aoc.3773

Mahammed A., Mondal B., Rana A., Dey A., Gros Z. Chem Commun. 2014, 50, 2725-2727. https://doi.org/10.1039/C3CC48462A

Zhang X., Guo W., Zhu W., Liang X. J. Porphyrins Phthalocyanines 2021, 25, 273-281. https://doi.org/10.1142/S1088424621500231

Xu L., Lei H., Zhang Z., Yao Z., Li J., Yu Z., Cao R. Phys Chem Chem Phys 2017, 19, 9755-9761. https://doi.org/10.1039/C6CP08495H

Li X., Lei H., Guo X., Zhao X., Ding S., Gao X., Zhang W., Cao R. ChemSusChem 2017, 10, 4632-4641. https://doi.org/10.1002/cssc.201701196

Zhang X., Wang Y., Zhu W., Mack J., Soy R.C., Nyokong T., Liang X. Dyes Pigm. 2020, 175, 108124. https://doi.org/10.1016/j.dyepig.2019.108124

Cummins D.C., Alvarado J.G., Zaragoza J.P.T., Effendy Mubarak M.Q., Lin Y.-T., de Visser S.P., Goldberg D.P. Inorg. Chem. 2020, 59, 16053-16064. https://doi.org/10.1021/acs.inorgchem.0c02640

Zhang P., Li M., Jiang Y., Xu L., Liang X., Zhu W. Macroheterocycles 2015, 8, 65-70. https://doi.org/10.6060/mhc150250z

Du P., Eisenberg R. Energy Environ. Sci. 2012, 5, 6012-6021. https://doi.org/10.1039/c2ee03250c

Dogutan D.K., McGuire R., Nocera D.G. J. Am. Chem. Soc. 2011, 133, 9178-9180. https://doi.org/10.1021/ja202138m

Alemayehu A.B., Teat S.J., Borisov S.M., Ghosh A. Inorg. Chem. 2020, 59, 6382-6389. https://doi.org/10.1021/acs.inorgchem.0c00477

Alemayehu A.B., McCormick-McPherson L.J., Conradie J., Ghosh A. Inorg. Chem. 2021, 60, 8315-8321. https://doi.org/10.1021/acs.inorgchem.1c00986

Li M., Niu Y., Zhu W., Mack J., Fomo G., Nyokong T., Liang X. Dyes Pigm. 2017, 137, 523-531. https://doi.org/10.1016/j.dyepig.2016.10.044

Nardis S., Mandoj F., Stefanelli M., Paolesse R. Coord. Chem. Rev. 2019, 388, 360-405. https://doi.org/10.1016/j.ccr.2019.02.034

Rongping Tang, Zhouqun Ji, Lin Xie, Hongyan Lu, Wei Tang, Xu Liang Маcroheterocycles 2021, 14, 87-93. https://doi.org/10.6060/mhc200920l

Опубликован
2022-12-29
Как цитировать
Liang, X. (2022). meso-Expanded Co(III)triarylcorroles with One to Three Nitrophenyl Moieties: Synthesis, Characterization and Tunable Electrochemical Catalysis. Макрогетероциклы/Macroheterocycles, 15(3), 190-194. извлечено от https://mhc-isuct.ru/article/view/4017
Раздел
Корролы