meso-Expanded Co(III)triarylcorroles with One to Three Nitrophenyl Moieties: Synthesis, Characterization and Tunable Electrochemical Catalysis
DOI: 10.6060/mhc214017a
Аннотация
To find the effect of electron distribution on the molecules on electrocatalysis performance, we have rationally synthesized three cobalt corrole molecules with different numbers of nitrophenyl groups at the periphery. The electron withdrawing nitrophenyl substituents alter the electron localization of the molecules, thus leading to variation in spectroscopy and electrochemistry of the cobalt corroles. The hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction have been investigated using different solutions, showing that Cor-N1 is best for HER while Cor-N2 is most suitable for OER.
Литература
Zhang W., Lai W., Cao R. Chem. Rev. 2016, 117, 3717-3797. https://doi.org/10.1021/acs.chemrev.6b00299
Liang X., Qiu Y., Zhang X., Zhu W. Dalton Trans. 2020, 49, 3326-3332. https://doi.org/10.1039/C9DT04917G
Zhao D., Zhuang Z., Cao X., Zhang C., Peng Q., Chen C., Li Y. Chem. Soc. Rev. 2020, 49, 2215-2264. https://doi.org/10.1039/C9CS00869A
Pan Y., Sun K., Liu S., Cao X., Wu K., Cheong W.-C., Chen Z., Wang Y., Li Y., Liu Y. J. Am. Chem. Soc. 2018, 140, 2610-2618. https://doi.org/10.1021/jacs.7b12420
Attatsi I.K., Zhong H., Du J., Zhu W., Li M., Liang X. Inorg. Chim. Acta 2020, 503, 119398. https://doi.org/10.1016/j.ica.2019.119398
Nie Y., Li L., Wei Z. Chem. Soc. Rev. 2015, 44, 2168-2201. https://doi.org/10.1039/C4CS00484A
Attatsi I.K., Zhu W., Liang X. Inorg. Chim. Acta. 2020, 507, 119584.
https://doi.org/10.1016/j.ica.2020.119584
Wang N., Zheng H., Zhang W., Cao R. Chin. J. Catal. 2018, 39, 228-244. https://doi.org/10.1016/S1872-2067(17)63001-8
Lin H., Hossain M.S., Zhan S.-Z., Liu H.-Y., Si L.-P. Appl. Organomet. Chem. 2020, 34, e5583. https://doi.org/10.1002/aoc.5583
Sahoo N.G., Pan Y., Li L., Chan S.H. Adv. Mater. 2012, 24, 4203-4210. https://doi.org/10.1002/adma.201104971
Faber M.S., Jin S. Energy Env. Sci. 2014, 7, 3519-3542. https://doi.org/10.1039/C4EE01760A
Wang M., Chen L., Sun L. Energy Environ. Sci. 2012, 5, 6763-6778. https://doi.org/10.1039/c2ee03309g
Galán‐Mascarós J.R. ChemElectroChem. 2015, 2, 37-50. https://doi.org/10.1002/celc.201402268
Meng J., Lei H., Li X., Qi J., Zhang W., Cao R. ACS Catal. 2019, 9, 4551-4560. https://doi.org/10.1021/acscatal.9b00213
Paolesse R., Mini S., Sagone F., Boschi T., Jaquinod L., Nurco D.J., Smith K.M. Chem. Commun. 1999, 1307-1308. https://doi.org/10.1039/a903247i
Gross Z., Galili N., Saltsman I. Angew. Chem. Int. Ed. 1999, 38, 1427-1429. https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1427::AID-ANIE1427>3.0.CO;2-1
Levy N., Mahammed A., Kosa M., Major D.T., Gross Z., Elbaz L. Angew. Chem. Int. Ed. 2015, 54, 14080-14084. https://doi.org/10.1002/anie.201505236
Kumar A., Sujesh S., Varshney P., Paul A., Jeyaraman S. Dalton Trans. 2019, 48, 11345-11351. https://doi.org/10.1039/C9DT02339A
Yuan H.-Q., Wang H.-H., Kandhadi J., Wang H., Zhan S.-Z., Liu H.-Y. Appl. Organomet. Chem. 2017, 31, e3773. https://doi.org/10.1002/aoc.3773
Mahammed A., Mondal B., Rana A., Dey A., Gros Z. Chem Commun. 2014, 50, 2725-2727. https://doi.org/10.1039/C3CC48462A
Zhang X., Guo W., Zhu W., Liang X. J. Porphyrins Phthalocyanines 2021, 25, 273-281. https://doi.org/10.1142/S1088424621500231
Xu L., Lei H., Zhang Z., Yao Z., Li J., Yu Z., Cao R. Phys Chem Chem Phys 2017, 19, 9755-9761. https://doi.org/10.1039/C6CP08495H
Li X., Lei H., Guo X., Zhao X., Ding S., Gao X., Zhang W., Cao R. ChemSusChem 2017, 10, 4632-4641. https://doi.org/10.1002/cssc.201701196
Zhang X., Wang Y., Zhu W., Mack J., Soy R.C., Nyokong T., Liang X. Dyes Pigm. 2020, 175, 108124. https://doi.org/10.1016/j.dyepig.2019.108124
Cummins D.C., Alvarado J.G., Zaragoza J.P.T., Effendy Mubarak M.Q., Lin Y.-T., de Visser S.P., Goldberg D.P. Inorg. Chem. 2020, 59, 16053-16064. https://doi.org/10.1021/acs.inorgchem.0c02640
Zhang P., Li M., Jiang Y., Xu L., Liang X., Zhu W. Macroheterocycles 2015, 8, 65-70. https://doi.org/10.6060/mhc150250z
Du P., Eisenberg R. Energy Environ. Sci. 2012, 5, 6012-6021. https://doi.org/10.1039/c2ee03250c
Dogutan D.K., McGuire R., Nocera D.G. J. Am. Chem. Soc. 2011, 133, 9178-9180. https://doi.org/10.1021/ja202138m
Alemayehu A.B., Teat S.J., Borisov S.M., Ghosh A. Inorg. Chem. 2020, 59, 6382-6389. https://doi.org/10.1021/acs.inorgchem.0c00477
Alemayehu A.B., McCormick-McPherson L.J., Conradie J., Ghosh A. Inorg. Chem. 2021, 60, 8315-8321. https://doi.org/10.1021/acs.inorgchem.1c00986
Li M., Niu Y., Zhu W., Mack J., Fomo G., Nyokong T., Liang X. Dyes Pigm. 2017, 137, 523-531. https://doi.org/10.1016/j.dyepig.2016.10.044
Nardis S., Mandoj F., Stefanelli M., Paolesse R. Coord. Chem. Rev. 2019, 388, 360-405. https://doi.org/10.1016/j.ccr.2019.02.034
Rongping Tang, Zhouqun Ji, Lin Xie, Hongyan Lu, Wei Tang, Xu Liang Маcroheterocycles 2021, 14, 87-93. https://doi.org/10.6060/mhc200920l