Dimer of Pd(II) β-Octaethylporphyrin Bound by a 1,3-Butadiene Bridge
DOI: 10.6060/mhc224638z
Аннотация
A method for obtaining porphyrin dimers bound by a 1,3-butadiene bridge through homocoupling of 2-boronylethenylporphyrins has been developed. The homocoupling reaction proceeds under mild conditions at room temperature using tetrakistriphenylphosphine palladium as a catalyst in the presence of the oxidizer silver oxide Ag2O. The corresponding dimeric product was obtained from palladium meso-(2-pinacolboronylethenyl)-b-octaethylporphyrinate. The UV-Vis absorption spectrum of the dimeric product is slightly different from that of the monomeric palladium meso-vinyl-b-octaethylporphyrinate, which indicates the absence of p-electronic conjugation between tetrapyrrole aromatic systems. The DFT calculation of the dimer showed that the orthogonal orientation of the butadiene bridge with respect to the plane of tetrapyrrole macrocycles is realized.
Литература
Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k
Xiao L., Lai T., Liu X., Liu F., Russell T.P., Liu Y., Huang F., Peng X., Cao Y. J. Mater. Chem. A 2018, 6, 18469-18478. https://doi.org/10.1039/C8TA05903A
Watanabe M., Sun S., Ishihara T., Kamimura T., Nishimura M., Tani F. ACS Appl. Energy Mater. 2018, 1, 6072-6081. https://doi.org/10.1021/acsaem.8b01113
Xiao L., Chen S., Chen X., Peng X., Cao Y., Zhu X. J. Mater. Chem. C 2018, 6, 3341-3345. https://doi.org/10.1039/C8TC00270C
Xun Z., Zeng Y., Chen J., Yu T., Zhang X., Yang G., Li Y. Chem. - Eur. J. 2016, 22, 8654-8662. https://doi.org/10.1002/chem.201504498
Kadish K., Guilard R., Smith K.M. The Porphyrin Handbook: Multiporphyrins, Multiphthalocyanines and Arrays. Elsevier Science, 2012.
Drobizhev M., Stepanenko Y., Dzenis Y., Karotki A., Rebane A., Taylor P.N., Anderson H.L. J. Am. Chem. Soc. 2004, 126, 15352-15353. https://doi.org/10.1021/ja0445847
Ohira S., Brédas J.-L. J. Mater. Chem. 2009, 19, 7545-7550. https://doi.org/10.1039/b906337d
Balaz M., Collins H.A., Dahlstedt E., Anderson H.L. Org. Biomol. Chem. 2009, 7, 874-888. https://doi.org/10.1039/b814789b
Dahlstedt E., Collins H.A., Balaz M., Kuimova M.K., Khurana M., Wilson B.C., Phillips D., Anderson H.L. Org. Biomol. Chem. 2009, 7, 897-904. https://doi.org/10.1039/b814792b
Robbins E., Leroy-Lhez S., Villandier N., Samoć M., Matczyszyn K. Molecules 2021, 26, 6323. https://doi.org/10.3390/molecules26206323
Wang K., Osuka A., Song J. ACS Central Science 2020, 6, 2159-2178. https://doi.org/10.1021/acscentsci.0c01300
Miyaura N., Suzuki A. Chem. Rev. 1995, 95, 2457-2483. https://doi.org/10.1021/cr00039a007
Suzuki A. Angew. Chem. Int. Ed. 2011, 50, 6722-6737. https://doi.org/10.1002/anie.201101379
Catellani M., Motti E., Della Ca N., Ferraccioli R. Eur. J. Org. Chem. 2007, 2007(25), 4153-4165. https://doi.org/10.1002/ejoc.200700312
Knappke C.E.I., Grupe S., Gärtner D., Corpet M., Gosmini C., von Wangelin J.A. Chem. - Eur. J. 2014, 20, 6828-6842. https://doi.org/10.1002/chem.201402302
Nelson T.D., Crouch R.D. In: Organic Reactions, pp. 265-555.
Valiente A., Carrasco S., Sanz-Marco A., Tai C.-W., Gómez A.B., Martín-Matute B. ChemCatChem 2019, 11, 3933-3940. https://doi.org/10.1002/cctc.201900556
Cravotto G., Palmisano G., Tollari S., Nano G.M., Penoni A. Ultrason. Sonochem. 2005, 12, 91-94. https://doi.org/10.1016/j.ultsonch.2004.05.005
Wu N., Li X., Xu X., Wang Y., Xu Y., Chen X. Lett. Org. Chem. 2010, 7, 11-14. https://doi.org/10.2174/157017810790534002
Yuan C., Zheng L., Zhao Y. Molecules 2019, 24, 3678. https://doi.org/10.3390/molecules24203678
Mulla S.A.R., Chavan S.S., Pathan M.Y., Inamdar S.M., Shaikh T.M.Y. RSC Adv. 2015, 5, 24675-24680. https://doi.org/10.1039/C4RA16760K
Santos-Filho E.F., Sousa J.C., Bezerra N.M.M., Menezes P.H., Oliveira R.A. Tetrahedron Lett. 2011, 52, 5288-5291. https://doi.org/10.1016/j.tetlet.2011.08.008
Parrish J.P., Jung Y.C., Floyd R.J., Jung K.W. Tetrahedron Lett. 2002, 43, 7899-7902. https://doi.org/10.1016/S0040-4039(02)01894-4
Adamo C., Amatore C., Ciofini I., Jutand A., Lakmini H. J. Am. Chem. Soc. 2006, 128, 6829-6836. https://doi.org/10.1021/ja0569959
Smith K.A., Campi E.M., Jackson W.R., Marcuccio S., Naeslund C.G.M., Deacon G.B. Synlett 1997, 1, 131-132. https://doi.org/10.1055/s-1997-710
Zhou Z., Hu Q., Du Z., Xue J., Zhang S., Xie Y. Synth. React. Inorg. M. 2012, 42, 940-943. https://doi.org/10.1080/15533174.2011.652280
Darzi E.R., White B.M., Loventhal L.K., Zakharov L.N., Jasti R. J. Am. Chem. Soc. 2017, 139, 3106-3114. https://doi.org/10.1021/jacs.6b12658
Demir A.S., Reis Ö., Emrullahoglu M. J. Org. Chem. 2003, 68, 10130-10134. https://doi.org/10.1021/jo034680a
Cheng G., Luo M. Eur. J. Org. Chem. 2011, 2011(13), 2519-2523. https://doi.org/10.1002/ejoc.201001729
Wang L., Wang H., Zhang W., Zhang J., Lewis J.P., Meng X., Xiao F.-S. J. Catal. 2013, 298, 186-197. https://doi.org/10.1016/j.jcat.2012.11.020
Karanjit S., Ehara M., Sakurai H. Chem. - Asian J. 2015, 10, 2397-2403. https://doi.org/10.1002/asia.201500535
Yamamoto Y. Synlett 2007, 2007(12), 1913-1916. https://doi.org/10.1055/s-2007-984531
Amatore C., Cammoun C., Jutand A. Eur. J. Org. Chem. 2008, 2008(27), 4567-4570. https://doi.org/10.1002/ejoc.200800631
Vogler T., Studer A. Adv. Synth. Catal. 2008, 350, 1963-1967. https://doi.org/10.1002/adsc.200800300
Tyagi D., Binnani C., Rai R.K., Dwivedi A.D., Gupta K., Li P.-Z., Zhao Y., Singh S.K. Inorg. Chem. 2016, 55, 6332-6343. https://doi.org/10.1021/acs.inorgchem.6b01115
Elias W.C., Signori A.M., Zaramello L., Albuquerque B.L., de Oliveira D.C., Domingos J.B. ACS Catal. 2017, 7, 1462-1469. https://doi.org/10.1021/acscatal.6b03490
Belyaev E.S., Shkirdova A.O., Kozhemyakin G.L., Tyurin V.S., Emets V.V., Grinberg V.A., Cheshkov D.A., Ponomarev G.V., Tafeenko V.A., Radchenko A.S., Kostyukov A.A., Egorov A.E., Kuzmin V.A., Zamilatskov I.A. Dyes Pigm. 2021, 191, 109354. https://doi.org/10.1016/j.dyepig.2021.109354
Sessler J.L., Mozaffari A., Johnson M.R. Org. Synth. 1992, 70, 68-75. https://doi.org/10.15227/orgsyn.070.0068
Buchler J.W., Puppe L. Liebigs Ann. Chem. 1974, 1974(7), 1046-1062. https://doi.org/10.1002/jlac.197419740705
Adler A.D., Longo F.R., Kampas F., Kim J. J. Inorg. Nucl. Chem. 1970, 32, 2443-2445. https://doi.org/10.1016/0022-1902(70)80535-8
Buchler J.W., Dreher C., Herget G. Liebigs Ann. Chem. 1988, 1988(1), 43-54. https://doi.org/10.1002/jlac.198819880110
Kalisch W.W., Senge M.O., Ruhlandt-Senge K. Photochem. Photobiol. 1998, 67, 312-323. https://doi.org/10.1111/j.1751-1097.1998.tb05204.x
Shkirdova A.O., Zamilatskov I.A., Stanetskaya N.M., Tafeenko V.A., Tyurin V.S., Chernyshev V.V., Ponomarev G.V., Tsivadze A.Y. Macroheterocycles 2017, 10, 480-486. https://doi.org/10.6060/mhc171148z
Erzina D.R., Zamilatskov I.A., Stanetskaya N.M., Tyurin V.S., Kozhemyakin G.L., Ponomarev G.V., Chernyshev V.V., Fitch A.N. Eur. J. Org. Chem. 2019, 2019(7), 1508-1522. https://doi.org/10.1002/ejoc.201801659
Sheldrick G.M. SADABS, Bruker AXS: Madison, Wisconsin (USA), 2008.
Sheldrick G. Acta Crystallogr. A 2008, 64, 112-122. https://doi.org/10.1107/S0108767307043930
Sheldrick G. Acta Crystallogr. C 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT. 2013.
Huang L., Kakadiaris E., Vaneckova T., Huang K., Vaculovicova M., Han G. Biomaterials 2019, 201, 77-86. https://doi.org/10.1016/j.biomaterials.2019.02.008
Mazur L.M., Roland T., Leroy-Lhez S., Sol V., Samoc M., Samuel I.D.W., Matczyszyn K. J. Phys. Chem. B 2019, 123, 4271-4277. https://doi.org/10.1021/acs.jpcb.8b12561
Johnson A.W., Oldfield D. J. Chem. Soc. C 1966, 794-798. https://doi.org/10.1039/J39660000794
Belyaev E.S., Kozhemyakin G.L., Tyurin V.S., Frolova V.V., Lonin I.S., Ponomarev G.V., Buryak A.K., Zamilatskov I.A. Org. Biomol. Chem. 2022, 20, 1926-1932. https://doi.org/10.1039/D1OB02005F
García-Domínguez A., Leach A.G., Lloyd-Jones G.C. Accounts Chem. Res. 2022, 55, 1324-1336. https://doi.org/10.1021/acs.accounts.2c00113
Sable V., Maindan K., Kapdi A.R., Shejwalkar P.S., Hara K. ACS Omega 2017, 2, 204-217. https://doi.org/10.1021/acsomega.6b00326
Lagoda N.A., Kurokhtina A.A., Larina E.V., Chechil E.V., Shmidt A.F. Proceedings of Irkutsk State Technical University 2013, 73(2), 141-147. http://journals.istu.edu/vestnik_irgtu/journals/2013/02
Safar Sajadi S.M., Khoee S. Scie. Rep. 2021, 11, 2832. https://doi.org/10.1038/s41598-021-82256-7