Octa-tert-butylsulfanyl Zinc Tetrapyrazinoporphyrazinate: Self-Assembled Nanostructures at the Air-Water Interface and Solid Solution in Thin Films

DOI: 10.6060/mhc224808m

  • Dmitrii Borisovich Bukharin ISUCT
  • Larissa Alexandrovna Maiorova ISUCT
  • Andrei Nikolaevich Gromov
  • Oscar Iosifovich Koifman
Ключевые слова: air-water interface, self-assembly, nanostructures, thin films, solid solution, zinc tetrapyrazineporphyrazine

Аннотация

Nanostructured monolayers of zinc octa-tert-butylsulfanyltetrapyrazinoporphyrazinate (ZnSPPz) were obtained at the water-air interface. This compound is characterized by the formation of two types of very stable monolayers: face-on and edge-on. The boundaries of the existence of M-monolayers of various types and the quantitative characteristics of their structure and properties (the size of nanostructures formed in the layer, the number of molecules in them, the distances between them, etc.) are determined. The model, phase diagram, and schemes of monolayers are constructed. It is shown that ZnSPPz behaves like a solid solution in the Langmuir-Schafer films obtained from the formed monolayers. The results are of interest for the development and creation of chemical sensors and photoactive thin-film nanomaterials based on ZnSPPz.

Литература

Bai C.L., Wang C. Phil. Trans. R. Soc. A 2013, 371, 20130263. https://doi.org/10.1098/rsta.2013.0263

Yan H-J., Liu J., Wang D., Wan L-J. Phil. Trans. R. Soc. A 2013, 371, 20120302. https://doi.org/10.1098/rsta.2012.0302

Maiorova L.A., Kobayashi N., Zyablov S.V., Bykov V.A., Nesterov S.I., Kozlov A.V., Koifman O.I. Langmuir 2018, 34, 9322-9329. https://doi.org/10.1021/acs.langmuir.8b00905

Maiorova L.A., Erokhina S.I., Pisani M., Barucca G., Marcaccio M., Koifman O.I., Salnikov D.S., Gromova O.A., Astolfi P., Ricci V., Erokhin V. Colloids Surf. B 2019, 182, 110366. https://doi.org/10.1016/j.colsurfb.2019.110366

Maiorova L.A. D. Sci. Diss., Russia. 2012, 382 p.

Rikhtegarana S., Katouzianbc I., Jafari S.M., Kiani H., Maiorova L.A., Takbirgou H. Food Structure 2021, 30, 100227. https://doi.org/10.1016/j.foostr.2021.100227

Rodriguez-Morgade M.S., Stuzhin P.A. J. Porphyrins Phthalocyanines 2004, 8, 1129-1165. https://doi.org/10.1142/S1088424604000490

Montalban A.G., Baum S., Barret A.G.M., Hoffman B.M. Dalton Trans. 2003, 2093-2102. https://doi.org/10.1039/B209800H

Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k

Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1-73. https://doi.org/10.1016/j.ccr.2018.01.015

Algethami N., Sadeghi H., Sangtarash S., Lambert C. J. Nano Lett. 2018, 18, 4482−4486. https://doi.org/10.1021/acs.nanolett.8b01621

Bellamy-Carter A., Roche C., Anderson H.L., Saywell A. Sci. Rep. 2021, 11, 20388. https://doi.org/10.1038/s41598-021-99881-x

Wang D., Niu L., Qiao Z. Y., Cheng D. B., Wang J., Zhong Y. A. CS Nano 2018, 12, 3796-3803. https://doi.org/10.1021/acsnano.8b01010

Stoffelen C., Huskens J. Soft Small 2016, 12, 96−119. https://doi.org/10.1002/smll.201501348

Weyandt E., Leanza L., Capelli R., Pavan G.M., Vantomme G., Meijer E.W. Nat. Commun. 2022, 13, 248. https://doi.org/10.1038/s41467-021-27831-2

Zhang N., Wang L., Wang H., Cao R., Wang J., Bai F., Fan H. Nano Lett. 2018, 18, 560-566. https://doi.org/10.1021/acs.nanolett.7b04701

Mattia E., Otto S. Nature Nanotech. 2015, 10, 111-119. https://doi.org/10.1038/nnano.2014.337

Ariga K., Nishikawa M., Mori T., Takeya J., Shrestha L.K., Hill J.P. Sci. Technol. Adv. Mater. 2019, 20, 51-95. https://doi.org/10.1080/14686996.2018.1553108

Webre W.A., Gobeze H. B., Shao S., Karr P.A., Ariga K., Hill J.P., D'Souza F. Chem. Commun. 2018, 54, 1351-1354. https://doi.org/10.1039/C7CC09524D

Oldacre A.N., Friedman A.E., Cook T.R. J. Am. Chem. Soc. 2017, 139, 1424−1427. https://doi.org/10.1021/jacs.6b12404

Brenner W., Ronson T. K., Nitschke J.R. J. Am. Chem. Soc. 2017, 139, 75-78. https://doi.org/10.1021/jacs.6b11523

Ariga K., Mori T., Nakanishi W., Hill J.P. Phys. Chem. Chem. Phys. 2017, 19, 23658-23676. https://doi.org/10.1039/C7CP02280H

Ariga K., Tsai K.C., Shrestha L.K., Hsu S.H. Mater. Chem. Front. 2021, 5, 1018-1032. https://doi.org/10.1039/D0QM00615G

Huang Z., Qin B., Chen L., Xu J.F., Faul C.F., Zhang X. Macromol. Rapid Commun. 2017, 38, 1700312−1700326. https://doi.org/10.1002/marc.201700312

Yang L., Tan X., Wang Z., Zhang X. Chem. Rev. 2015, 115, 7196−7239. https://doi.org/10.1021/cr500633b

Shee N.K., Kim M.K., Kim H.J. Nanomaterials (Basel) 2020, 10, 2314-2329. https://doi.org/10.3390/nano10112314

Huo Z., Badets V., Ibrahim H., Goldmann M., Xu H., Yi T. Eur. J. Org. Chem. 2021, 6636−6645. https://doi.org/10.1002/ejoc.202100918

Stulz E. Acc. Chem. Res. 2017, 50, 823−831. https://doi.org/10.1021/acs.accounts.6b00583

Rubia-Payá C., De Miguel G., Martín-Romero M.T., Giner-Casares J.J., Camacho L. Adv. Colloid Interface Sci. 2015, 225, 134−145. https://doi.org/10.1016/j.cis.2015.08.012

Yamamoto S., Nagatani H., Imura H. Langmuir 2017, 33, 10134−10142. https://doi.org/10.1021/acs.langmuir.7b01422

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2020, 342, 136064. https://doi.org/10.1016/j.electacta.2020.136064

Konev D., Devillers S., Lizgina K., Zyubina T., Zyubina A., Vorotyntsev M. Electrochim. Acta 2014, 112, 3-10. https://doi.org/10.1016/j.electacta.2013.10.004

Vorotyntsev M., Konev D., Devillers S. Conference Proceedings: Organic and Hybrid Materials 2013, 12-15.

Shimakoshi H., Hisaeda Y. Curr. Opin. Electrochem. 2018, 8, 24−30. https://doi.org/10.1016/j.coelec.2017.12.001

Shahadat H.M., Younus H.A., Ahmad N., Zhang S., Zhuiykov S., Verpoort F. Chem. Commun. 2020, 56, 1968-1971. https://doi.org/10.1039/C9CC08838E

Berezina N.M., Vu T.T., Kharitonova N.V., Maiorova L.A., Koifman O.I., Zyablov S.V. Macroheterocycles 2019, 12, 282-291. https://doi.org/10.6060/mhc190127b

Jung, E., Shin H., Lee B.H., Efremov V., Lee S., Lee H.S. Nat. Mater. 2020, 19, 436-442. https://doi.org/10.1038/s41563-019-0571-5

Wang J., Dou S., Wang X. Sci. Adv. 2021, 7:eabf 3989. https://doi.org/10.1126/sciadv.abf3989

Mon M., Bruno R., Ferrando-Soria J., Armentano D., Pardo E. J. Mater. Chem. A 2018, 6, 4912-4947. https://doi.org/10.1039/C8TA00264A

De-Jing Li, Qiao-hong Li, Zhi-Gang Gu, Jian Zhang Nano Lett. 2021, 21, 10012–10018. https://doi.org/10.1021/acs.nanolett.1c03655

Valkova L.A., Glibin A.S., Koifman O.I. Macroheterocycles 2011, 4, 222-226. https://doi.org/10.6060/mhc2011.3.13

Petrova M.V., Maiorova L.A., Gromova O.A., Bulkina T.A., Ageeva T.A., Koifman O.I. Macroheterocycles 2014, 7, 267-271. https://doi.org/10.6060/mhc131163m

Karlyuk M.V., Krygin Y.Y., Maiorova L.A., Ageeva T.A., Koifman O.I. Russ. Chem. Bull. 2013, 62(2), 471-479. https://doi.org/10.1007/s11172-013-0066-5

Vu T.T., Maiorova L.A., Berezin D.B., Koifman O.I. Macroheterocycles 2016, 9, 73-79. https://doi.org/10.6060/mhc151205m

Valkova L.A., Erokhin V.V., Glibin A.S., Koifman O.I. J. Porphyrins Phthalocyanines 2011, 15, 1044-1051. https://doi.org/10.1142/S1088424611004026

Kharitonova N.V., Maiorova L.A., Koifman O.I. J. Porphyrins Phthalocyanines 2018, 22, 509-520. https://doi.org/10.1142/S1088424618500505

Maiorova L.A., Koifman O.I., Burmistrov V.A., Kuvshinova S.A., Mamontov A.O. Prot. Met. Phys. Chem. 2015, 51, 85-92. https://doi.org/10.1134/S2070205115010074

Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Mol. Cryst. Liq. Cryst. C 1996, 6(4), 291-298.

Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Izv. Akad. Nauk, Ser. Fiz. 1997, 61, 631-636.

Pisani M., Maiorova L.A., Francescangeli O., Fokin D.S., Nikitin K.S., Burmistrov V.A., Kuvshinova S.A., Mengucci P., Koifman O.I. Mol. Cryst. Liq. Cryst. 2017, 649(1), 2-10. https://doi.org/10.1080/15421406.2017.1303917

Gromova O.A., Maiorova L.A., Salnikov D.S., Demidov V.I., Kalacheva A.G., Torshin I.Yu., Bogacheva T.E., Gromov A.N., Limanova O.A., Grishina T.R., Jafari S.M., Koifman O.I. BioNanoSci. 2022, 12, 74-82. https://doi.org/10.1007/s12668-021-00916-4

Donzello M.P., Viola E., Ercolani C., Fu Zh., Futur D., Kadish K.M. Inorg. Chem. 2012, 51, 12548-12559. https://doi.org/10.1021/ic301989a

Skvortsov I.A., Zimcik P., Stuzhin P.A., Novakova V. Dalton Trans. 2020, 49, 11090-11098. https://doi.org/10.1039/D0DT01703E

Zimcik P., Miletin M., Musil Z., Kopecky K., Kubza L., Brault D. J. Photochem. Photobiol., A 2006, 183, 596-604. https://doi.org/10.1016/j.jphotochem.2006.02.022

Опубликован
2022-12-29
Как цитировать
Bukharin, D., Maiorova, L., Gromov, A., & Koifman, O. (2022). Octa-tert-butylsulfanyl Zinc Tetrapyrazinoporphyrazinate: Self-Assembled Nanostructures at the Air-Water Interface and Solid Solution in Thin Films. Макрогетероциклы/Macroheterocycles, 15(3), 166-173. извлечено от https://mhc-isuct.ru/article/view/4808
Раздел
Порфиразины