Octa-tert-butylsulfanyl Zinc Tetrapyrazinoporphyrazinate: Self-Assembled Nanostructures at the Air-Water Interface and Solid Solution in Thin Films
DOI: 10.6060/mhc224808m
Аннотация
Nanostructured monolayers of zinc octa-tert-butylsulfanyltetrapyrazinoporphyrazinate (ZnSPPz) were obtained at the water-air interface. This compound is characterized by the formation of two types of very stable monolayers: face-on and edge-on. The boundaries of the existence of M-monolayers of various types and the quantitative characteristics of their structure and properties (the size of nanostructures formed in the layer, the number of molecules in them, the distances between them, etc.) are determined. The model, phase diagram, and schemes of monolayers are constructed. It is shown that ZnSPPz behaves like a solid solution in the Langmuir-Schafer films obtained from the formed monolayers. The results are of interest for the development and creation of chemical sensors and photoactive thin-film nanomaterials based on ZnSPPz.
Литература
Bai C.L., Wang C. Phil. Trans. R. Soc. A 2013, 371, 20130263. https://doi.org/10.1098/rsta.2013.0263
Yan H-J., Liu J., Wang D., Wan L-J. Phil. Trans. R. Soc. A 2013, 371, 20120302. https://doi.org/10.1098/rsta.2012.0302
Maiorova L.A., Kobayashi N., Zyablov S.V., Bykov V.A., Nesterov S.I., Kozlov A.V., Koifman O.I. Langmuir 2018, 34, 9322-9329. https://doi.org/10.1021/acs.langmuir.8b00905
Maiorova L.A., Erokhina S.I., Pisani M., Barucca G., Marcaccio M., Koifman O.I., Salnikov D.S., Gromova O.A., Astolfi P., Ricci V., Erokhin V. Colloids Surf. B 2019, 182, 110366. https://doi.org/10.1016/j.colsurfb.2019.110366
Maiorova L.A. D. Sci. Diss., Russia. 2012, 382 p.
Rikhtegarana S., Katouzianbc I., Jafari S.M., Kiani H., Maiorova L.A., Takbirgou H. Food Structure 2021, 30, 100227. https://doi.org/10.1016/j.foostr.2021.100227
Rodriguez-Morgade M.S., Stuzhin P.A. J. Porphyrins Phthalocyanines 2004, 8, 1129-1165. https://doi.org/10.1142/S1088424604000490
Montalban A.G., Baum S., Barret A.G.M., Hoffman B.M. Dalton Trans. 2003, 2093-2102. https://doi.org/10.1039/B209800H
Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T., von Borczyskowski Ch., Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven’kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k
Novakova V., Donzello M.P., Ercolani C., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2018, 361, 1-73. https://doi.org/10.1016/j.ccr.2018.01.015
Algethami N., Sadeghi H., Sangtarash S., Lambert C. J. Nano Lett. 2018, 18, 4482−4486. https://doi.org/10.1021/acs.nanolett.8b01621
Bellamy-Carter A., Roche C., Anderson H.L., Saywell A. Sci. Rep. 2021, 11, 20388. https://doi.org/10.1038/s41598-021-99881-x
Wang D., Niu L., Qiao Z. Y., Cheng D. B., Wang J., Zhong Y. A. CS Nano 2018, 12, 3796-3803. https://doi.org/10.1021/acsnano.8b01010
Stoffelen C., Huskens J. Soft Small 2016, 12, 96−119. https://doi.org/10.1002/smll.201501348
Weyandt E., Leanza L., Capelli R., Pavan G.M., Vantomme G., Meijer E.W. Nat. Commun. 2022, 13, 248. https://doi.org/10.1038/s41467-021-27831-2
Zhang N., Wang L., Wang H., Cao R., Wang J., Bai F., Fan H. Nano Lett. 2018, 18, 560-566. https://doi.org/10.1021/acs.nanolett.7b04701
Mattia E., Otto S. Nature Nanotech. 2015, 10, 111-119. https://doi.org/10.1038/nnano.2014.337
Ariga K., Nishikawa M., Mori T., Takeya J., Shrestha L.K., Hill J.P. Sci. Technol. Adv. Mater. 2019, 20, 51-95. https://doi.org/10.1080/14686996.2018.1553108
Webre W.A., Gobeze H. B., Shao S., Karr P.A., Ariga K., Hill J.P., D'Souza F. Chem. Commun. 2018, 54, 1351-1354. https://doi.org/10.1039/C7CC09524D
Oldacre A.N., Friedman A.E., Cook T.R. J. Am. Chem. Soc. 2017, 139, 1424−1427. https://doi.org/10.1021/jacs.6b12404
Brenner W., Ronson T. K., Nitschke J.R. J. Am. Chem. Soc. 2017, 139, 75-78. https://doi.org/10.1021/jacs.6b11523
Ariga K., Mori T., Nakanishi W., Hill J.P. Phys. Chem. Chem. Phys. 2017, 19, 23658-23676. https://doi.org/10.1039/C7CP02280H
Ariga K., Tsai K.C., Shrestha L.K., Hsu S.H. Mater. Chem. Front. 2021, 5, 1018-1032. https://doi.org/10.1039/D0QM00615G
Huang Z., Qin B., Chen L., Xu J.F., Faul C.F., Zhang X. Macromol. Rapid Commun. 2017, 38, 1700312−1700326. https://doi.org/10.1002/marc.201700312
Yang L., Tan X., Wang Z., Zhang X. Chem. Rev. 2015, 115, 7196−7239. https://doi.org/10.1021/cr500633b
Shee N.K., Kim M.K., Kim H.J. Nanomaterials (Basel) 2020, 10, 2314-2329. https://doi.org/10.3390/nano10112314
Huo Z., Badets V., Ibrahim H., Goldmann M., Xu H., Yi T. Eur. J. Org. Chem. 2021, 6636−6645. https://doi.org/10.1002/ejoc.202100918
Stulz E. Acc. Chem. Res. 2017, 50, 823−831. https://doi.org/10.1021/acs.accounts.6b00583
Rubia-Payá C., De Miguel G., Martín-Romero M.T., Giner-Casares J.J., Camacho L. Adv. Colloid Interface Sci. 2015, 225, 134−145. https://doi.org/10.1016/j.cis.2015.08.012
Yamamoto S., Nagatani H., Imura H. Langmuir 2017, 33, 10134−10142. https://doi.org/10.1021/acs.langmuir.7b01422
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2020, 342, 136064. https://doi.org/10.1016/j.electacta.2020.136064
Konev D., Devillers S., Lizgina K., Zyubina T., Zyubina A., Vorotyntsev M. Electrochim. Acta 2014, 112, 3-10. https://doi.org/10.1016/j.electacta.2013.10.004
Vorotyntsev M., Konev D., Devillers S. Conference Proceedings: Organic and Hybrid Materials 2013, 12-15.
Shimakoshi H., Hisaeda Y. Curr. Opin. Electrochem. 2018, 8, 24−30. https://doi.org/10.1016/j.coelec.2017.12.001
Shahadat H.M., Younus H.A., Ahmad N., Zhang S., Zhuiykov S., Verpoort F. Chem. Commun. 2020, 56, 1968-1971. https://doi.org/10.1039/C9CC08838E
Berezina N.M., Vu T.T., Kharitonova N.V., Maiorova L.A., Koifman O.I., Zyablov S.V. Macroheterocycles 2019, 12, 282-291. https://doi.org/10.6060/mhc190127b
Jung, E., Shin H., Lee B.H., Efremov V., Lee S., Lee H.S. Nat. Mater. 2020, 19, 436-442. https://doi.org/10.1038/s41563-019-0571-5
Wang J., Dou S., Wang X. Sci. Adv. 2021, 7:eabf 3989. https://doi.org/10.1126/sciadv.abf3989
Mon M., Bruno R., Ferrando-Soria J., Armentano D., Pardo E. J. Mater. Chem. A 2018, 6, 4912-4947. https://doi.org/10.1039/C8TA00264A
De-Jing Li, Qiao-hong Li, Zhi-Gang Gu, Jian Zhang Nano Lett. 2021, 21, 10012–10018. https://doi.org/10.1021/acs.nanolett.1c03655
Valkova L.A., Glibin A.S., Koifman O.I. Macroheterocycles 2011, 4, 222-226. https://doi.org/10.6060/mhc2011.3.13
Petrova M.V., Maiorova L.A., Gromova O.A., Bulkina T.A., Ageeva T.A., Koifman O.I. Macroheterocycles 2014, 7, 267-271. https://doi.org/10.6060/mhc131163m
Karlyuk M.V., Krygin Y.Y., Maiorova L.A., Ageeva T.A., Koifman O.I. Russ. Chem. Bull. 2013, 62(2), 471-479. https://doi.org/10.1007/s11172-013-0066-5
Vu T.T., Maiorova L.A., Berezin D.B., Koifman O.I. Macroheterocycles 2016, 9, 73-79. https://doi.org/10.6060/mhc151205m
Valkova L.A., Erokhin V.V., Glibin A.S., Koifman O.I. J. Porphyrins Phthalocyanines 2011, 15, 1044-1051. https://doi.org/10.1142/S1088424611004026
Kharitonova N.V., Maiorova L.A., Koifman O.I. J. Porphyrins Phthalocyanines 2018, 22, 509-520. https://doi.org/10.1142/S1088424618500505
Maiorova L.A., Koifman O.I., Burmistrov V.A., Kuvshinova S.A., Mamontov A.O. Prot. Met. Phys. Chem. 2015, 51, 85-92. https://doi.org/10.1134/S2070205115010074
Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Mol. Cryst. Liq. Cryst. C 1996, 6(4), 291-298.
Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Izv. Akad. Nauk, Ser. Fiz. 1997, 61, 631-636.
Pisani M., Maiorova L.A., Francescangeli O., Fokin D.S., Nikitin K.S., Burmistrov V.A., Kuvshinova S.A., Mengucci P., Koifman O.I. Mol. Cryst. Liq. Cryst. 2017, 649(1), 2-10. https://doi.org/10.1080/15421406.2017.1303917
Gromova O.A., Maiorova L.A., Salnikov D.S., Demidov V.I., Kalacheva A.G., Torshin I.Yu., Bogacheva T.E., Gromov A.N., Limanova O.A., Grishina T.R., Jafari S.M., Koifman O.I. BioNanoSci. 2022, 12, 74-82. https://doi.org/10.1007/s12668-021-00916-4
Donzello M.P., Viola E., Ercolani C., Fu Zh., Futur D., Kadish K.M. Inorg. Chem. 2012, 51, 12548-12559. https://doi.org/10.1021/ic301989a
Skvortsov I.A., Zimcik P., Stuzhin P.A., Novakova V. Dalton Trans. 2020, 49, 11090-11098. https://doi.org/10.1039/D0DT01703E
Zimcik P., Miletin M., Musil Z., Kopecky K., Kubza L., Brault D. J. Photochem. Photobiol., A 2006, 183, 596-604. https://doi.org/10.1016/j.jphotochem.2006.02.022