The Influence of the Nature of the Spacer Fragment of the Peripheral Substituent on the Catalytic Behavior of Carboxyphenyl-Substituted Phthalocyanine Complexes
Аннотация
Present work reveals the study of catalytic properties of copper and cobalt complexes with phthalocyanine ligands with o-carboxyphenoxy/carboxyphenylsulfanyl/carboxyphenylamino- substituents in the peripheral positions of the macroring. For compounds, the aggregative behavior in aqueous and aqueous-alkaline media was studied. On the example of the reaction of catalytic oxidation of sulfur-containing organic substrates, the rate constants of the formation of the corresponding disulfide were determined. The influence of the nature of the spacer fragment of the peripheral substituent on the activity of the complexes as catalysts for liquid-phase oxidation was revealed.
Литература
Klyamer D., Bonegardt D., Basova T. Chemosensors 2021, 9(6), 133. https://doi.org/10.3390/chemosensors9060133
Claessens C.G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97. https://doi.org/10.1002/tcr.20139
Bunin D.A., Martynov A.G., Safonova E.A., Tsivadze A.Y., Gorbunova Y.G. Dyes Pigm. 2022, 207, 110768. https://doi.org/10.1016/j.dyepig.2022.110768
Martynov A.G., Gorbunova Y.G., Tsivadze A.Y. Russ. J. Inorg. Chem. 2014, 59, 1635-1664. https://doi.org/10.1134/S0036023614140046
Grishina A.D., Gorbunova Y.G., Zolotarevsky V.I., Pereshivko L.Y., Enakieva Y.Y., Krivenko T.V., Savelyev V., Vannikov A.V., Tsivadze A.Y. J. Porphyrins Phthalocyanines 2009, 13, 92-98. https://doi.org/10.1142/S1088424609000231
Gol'Dshleger N.V., Baulin V.E., Tsivadze A.Y. Prot. Met. Phys. Chem. Surfaces 2014, 50, 135-172. https://doi.org/10.1134/S2070205114020087
Kumar A., Kumar Vashistha V., Kumar Das D. Coord. Chem. Rev. 2021, 431, 213678. https://doi.org/10.1016/j.ccr.2020.213678
Basova T., Hassan A., Durmuş M., Gürek A.G., Ahsen V. Coord. Chem. Rev. 2016, 310, 131-153. https://doi.org/10.1016/j.ccr.2015.11.005
Mani V., Devasenathipathy R., Chen S.M., Gu J.A., Huang S.T. Renew. Energy 2015, 74, 867-874. https://doi.org/10.1016/j.renene.2014.09.003
Sorokin A.B., Kudrik E.V. Catal. Today 2011, 159, 37-46. https://doi.org/10.1016/j.cattod.2010.06.020
Sorokin A.B. Catal. Today 2021, 373, 38-58. https://doi.org/10.1016/j.cattod.2021.03.016
Ji W., Wang T.X., Ding X., Lei S., Han B.H. Coord. Chem. Rev. 2021, 439, 213875. https://doi.org/10.1016/j.ccr.2021.213875
Morozan A., Campidelli S., Filoramo A., Jousselme B., Palacin S. Carbon N.Y. 2011, 49, 4839-4847. https://doi.org/10.1016/j.carbon.2011.07.004
Monteiro C.J.P., Faustino M.A.F., Neves M. da G.P.M.S., Simões M.M.Q., Sanjust E. Catalysts 2021, 11(1), 122. https://doi.org/10.3390/catal11010122
Vashurin A., Kuzmin I., Razumov M., Golubchikov O. Macroheterocycles 2018, 11, 11-20. https://doi.org/10.6060/mhc180168v
Parkin G., Sauvage J.-P., Day P., Duan X., Gade L.H., Poeppelmeier K.R. In: Functional Phthalocyanine Molecular Materials (Jiang J., Ed.), New York: Springer, 2010. p. 329.
Kobayashi N. Curr. Opin. Solid State Mater. Sci. 1999, 4, 345-353. https://doi.org/10.1016/S1359-0286(99)00030-3
Vashurin A., Maizlish V., Kuzmin I., Petrov O., Razumov M., Pukhovskaya S., Golubchikov O., Koifman O. J. Incl. Phenom. Macrocycl. Chem. 2017, 87, 37-43. https://doi.org/10.1007/s10847-016-0674-4
Goldshleger N.F., Lapshina M.A., Baulin V.E., Shiryaev A.A., Gorbunova Y.G., Tsivadze A.Y. Russ. Chem. Bull. 2020, 69(7), 1223-1244. https://doi.org/10.1007/s11172-020-2893-5
Yagodin A.V., Martynov A.G., Gorbunova Y.G., Tsivadze A.Y. Macroheterocycles 2021, 14, 130-134. https://doi.org/10.6060/mhc210541m
Kobayashi N., Fukuda T. Funct. Dyes 2006, 1-45. https://doi.org/10.1016/B978-044452176-7/50002-4
Dini D., Barthel M., Hanack M. Eur. J. Org. Chem. 2001, 3759-3769. https://doi.org/10.1002/1099-0690(200110)2001:20<3759::AID-EJOC3759>3.0.CO;2-U
Çakir V., Göksel M., Durmuş M., Biyiklioglulu Z. Dyes Pigm. 2016, 125, 414-425. https://doi.org/10.1016/j.dyepig.2015.10.035
Hao E., Jensen T.J., Courtney B.H., Vicente M.G.H. Bioconjugate Chem. 2005, 16, 1495-1502. https://doi.org/10.1021/bc0502098
Dumoulin F., Durmuş M., Ahsen V., Nyokong T. Coord. Chem. Rev. 2010, 254, 2792-2847. https://doi.org/10.1016/j.ccr.2010.05.002
Movchan T.G., Chernyad'ev A.Y., Plotnikova E.V., Tsivadze A.Y., Baulin V.E. Colloid J. 2019, 81, 711-719. https://doi.org/10.1134/S1061933X19060127
Sorokin A.B. Chem. Rev. 2013, 113, 8152-8191. https://doi.org/10.1021/cr4000072
Borisenkova S.A. Pet. Chem. 1991, 31, 391-408. https://doi.org/10.1002/pen.760310511
Shishkin V.N., Kudrik E.V., Makarov S.V., Shaposhnikov G.P. Kinet. Catal. 2007, 48, 660-663. https://doi.org/10.1134/S0023158407050102
Hoffmann M.R., Lim B.C. Environ. Sci. Technol. 1979, 13, 1406-1414. https://doi.org/10.1021/es60159a014
Vashurin A., Maizlish V., Pukhovskaya S., Voronina A., Kuzmin I., Futerman N., Golubchikov O., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 573-581. https://doi.org/10.1142/S1088424614501028
Vashurin A., Maizlish V., Kuzmin I., Znoyko S., Morozova A., Razumov M., Koifman O. J. Porphyrins Phthalocyanines 2017, 21, 37-47. https://doi.org/10.1142/S108842461750002X
Vashurin A., Kuzmin I., Mayzlish V., Razumov M., Golubchikov O., Koifman O. J. Serbian. Chem. Soc. 2016, 81, 1025-1036. https://doi.org/10.2298/JSC160105048V
Botnar' A.A., Domareva N.P., Erzunov D.A., Futerman N.A., Tikhomirova T.V., Maizlish V.E., Vashurin A.S. Russ. Chem. Bull. 2021, 70, 1297-1303. https://doi.org/10.1007/s11172-021-3214-3
Vashurin A.S., Pukhovskaya S.G., Semeikin A.S., Golubchikov O.A. Macroheterocycles 2012, 5, 72-75. https://doi.org/10.6060/mhc2012.111251v
Hestand N.J., Spano F.C. Chem. Rev. 2018, 118, 7069-7163. https://doi.org/10.1021/acs.chemrev.7b00581
Lavallee D.K. Synth. React. Inorg. Met. Chem. 1982, 12, 323-324. https://doi.org/10.1080/00945718208057503