Construction of Supramolecular Self-Assembled Frameworks Comprised of p-Nitrophenol and Four Modified Cucurbit[n]urils
Аннотация
Herein, we report the supramolecular self-assembly of fully substituted cyclopentyl-derived cucurbit[5]uril (CyP5Q[5]), cucurbit[6]uril (CyP6Q[6]), symmetrical dicyclopentyl-substituted cucurbit[6]uril (CyP2Q[6]) and fully substituted cyclobutyl-derived cucurbit[5]uril (CyB5Q[5]) with p-nitrophenol (G). Single-crystal X-ray diffraction was employed to characterize these supramolecular complexes [C81H81CaCl2N26O29 (1), C60H85Ca2Cd2Cl8N25O25 (2), C27H37CaCl4N13O14Zn (3) and C58H63CaCl4N23O23Zn (4)]. In these four systems, calcium ions were introduced to coordinate with the cucurbit[n]uril and G was enriched on the outer surface of the cucurbit[n]uril to construct four supramolecular frameworks.
Литература
Freeman W. A., Mock W. L., Shih N.Y. J. Am. Chem. Soc. 1981, 103, 7367-7368. https://doi.org/10.1021/ja00414a070
Shen Y., Zou L., Wang Q. New J. Chem. 2017, 41, 7857-7860. https://doi.org/10.1039/C7NJ01669G
Wu Y.F., Xu L.X., Shen Y.N., Wang Y., Zou L., Wang Q.C., Jiang X.Q., Liu J.S., Tian H. Chem. Commun. 2017, 53, 4070-4072. https://doi.org/10.1039/C7CC01729D
Li Q., Zhou J., Sun J., Yang J. Tetrahedron Lett. 2019, 60, 151022. https://doi.org/10.1016/j.tetlet.2019.151022
Meng Y., Zhao W.W., Zheng J., Jiang D.F., Gao J., Jin Y.M., Ma P.H. RSC Advances 2021, 11, 3470-3475. https://doi.org/10.1039/D0RA09074C
Zhao J., Kim H.J., Oh J., Kim S.Y., Lee J.W., Sakamoto S., Yamaguchi K., Kim K. Angew. Chem. 2001, 113, 4363-4365. https://doi.org/10.1002/1521-3757(20011119)113:22<4363::AID-ANGE4363>3.0.CO;2-B
Wu F., Wu L.H., Xiao X., Zhang Y.Q., Xue S.F., Tao Z., Day A.I. J. Org. Chem. 2012, 77, 606-611. https://doi.org/10.1021/jo2021778
Wu L.H., Ni X.L., Wu F., Zhang Y.Q., Zhu Q.J., Xue S.F., Tao Z. J. Mol. Struct. 2009, 920, 183-188. https://doi.org/10.1016/j.molstruc.2008.10.057
Jon S.Y., Selvapalam N., Oh D.H., et al. J. Am. Chem. Soc. 2003, 125, 10186-10187. https://doi.org/10.1021/ja036536c
Isobe H., Sato S., Nakamura E. Org. Lett. 2002, 4(8), 1287-1289. https://doi.org/10.1021/ol025749o
Chen M.H., Lv N.X., Zhao W.W., Day A.I. Molecules 2021, 26, 7343. https://doi.org/10.3390/molecules26237343
Gerasko O.A., Sokolov M.N., Fedin V.P. Pure. Appl. Chem. 2004, 76, 1633. https://doi.org/10.1351/pac200476091633
Ni X.L., Xiao X., Cong H., Liang L.L., Chen K., Cheng X.J., Ji N.N., Zhu Q. J., Xue S.F., Tao Z. Chem. Soc. Rev. 2013, 42, 9480-9508. https://doi.org/10.1039/c3cs60261c
Lü J., Lin J.-X., Cao M.-N., Cao R. Coord. Chem. Rev. 2013, 257, 1334-1356. https://doi.org/10.1016/j.ccr.2012.12.014
Ni X.L., Xue S.F., Tao Z., Zhu Q.J., Lindoy L.F., Wei G. Coord. Chem. Rev. 2015, 287, 89-113. https://doi.org/10.1016/j.ccr.2014.12.018
Tian J., Chen L., Zhang D.W., Liu Y., Li Z.T. Chem. Commun. 2016, 52, 6351-6362. https://doi.org/10.1039/C6CC02331B
Qu Y.X., Zhou K.Z., Chen K., Zhang Y.Q., Xiao X., Zhou Q.D., Tao Z., Ma P.H., Wei G. Inorg. Chem. 2018, 57, 7412-7419. https://doi.org/10.1021/acs.inorgchem.8b01039
Hon G.L., Min S.X., Zhao Y.H., Dong B., Zhang L.N., Li D.H., Wu W.C., Zhu H.F., Song B. Dyes Pigm. 2020, 180, 108460. https://doi.org/10.1016/j.dyepig.2020.108460
Assaf K.I., Nau W.M. Chem. Soc. Rev. 2015, 44, 394-418. https://doi.org/10.1039/C4CS00273C
Liu D.E., Yan X.J., An J.X., Ma J.B., Gao H. ; J. Mater. Chem. B 2020, 8, 7475-7482. https://doi.org/10.1039/D0TB01180K
Murray J., Kim K., Ogoshi T., Yao W., Gibb B.C. Chem. Soc. Rev. 2017, 46, 2479-2496. https://doi.org/10.1039/C7CS00095B
Safia H., Fatiha M., Belgacem B., Leila N. J. Mol. Struct. 2020, 1217, 128390. https://doi.org/10.1016/j.molstruc.2020.128390
Mosquera J., Zhao Y., Jang H., Xie N., Xu C., Kotov N.A., Liz-Marzán L.M. Adv. Funct. Mater. 2020, 30(2), 1902082. https://doi.org/10.1002/adfm.201902082
Qu Y.X., Lin R.L., Zhang Y.Q., Zhou K.Z., Zhou Q.D., Zhu Q.J., Tao Z., Ma P.H., Liu J.X., Wei G. Org. Chem. Front. 2017, 4, 1799-1805. https://doi.org/10.1039/C7QO00376E
Ni X.L., Xiao X., Cong H., Zhu Q.J., Xue S.F., Tao Z. Acc. Chem. Res. 2014, 47, 1386-1395. https://doi.org/10.1021/ar5000133
Huang Y., Gao R.H., Ni X.L., Xiao X., Cong H., Zhu Q.J., Chen K., Tao Z. Angew. Chem. Int. Ed. 2020, 60, 15166-15191. https://doi.org/10.1002/anie.202002666
Zheng J., Zhao W.W., Meng Y., Jin Y.M., Gao J., Ma P.H. Cryst. Res. Technol. 2021, 56(3), 2000183. https://doi.org/10.1002/crat.202000183
Whitesides G.M., Simanek E.E., Mathias J.P., Seto C.T., Chin D.N., Mammen M., Gordon D.M. Acc. Chem. Res. 1995, 28, 37-44. https://doi.org/10.1021/ar00049a006
Naylor S., Hunter C.A., Cowan J.A., Lamb J.H., Sanders J.K.M. J. Am. Chem. Soc. 1990, 112, 5525-5534. https://doi.org/10.1021/ja00170a016
Nishio M., Umezawa Y., Hirota M., Takeuchi Y. Tetrahedron 1995, 51, 8665-8701. https://doi.org/10.1016/0040-4020(94)01066-9
Carnie S.L., Chan D. J. Chem. Phys. 1980, 73, 2949-2957. https://doi.org/10.1063/1.440468