Surface Properties, Interface Events and Energy Relaxation Processes in Nanoassemblies Based on Ag-In-S/ZnS Quantum Dots and Porphyrins
Аннотация
Based on comparative experimental spectral-kinetic data and quantum chemical calculations (method MM+) it was argued that in water at pH 7.5 and ambient temperature, electrostatic interactions of positively charged 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin molecules (free bases) with negatively charged glutathione stabilized core/shell semiconductor quantum dots (QD) AIS/ZnS/GSH lead to the formation of stable «QD-porphyrin» nanoassemblies. The obtained results indicate that interaction of AIS/ZnS/GSH QDs with positively charged H2P4+ molecules is not described appropriately by the Poisson statistics (the nanoassembly stoichiometry is 1:1), and followed by a very fast metalation of porphyrin free base (formation of the extra-ligated Zn-porphyrin complex) which is directly fixed on the QD surface. The detailed analysis of experimental results and structural parameters for the size-consistent 3D model of the above «QD-porphyrin» nanoassembly evidently showed for the first time that the non-radiative relaxation of QD excitonic excitation energy is due to competitive processes: FRET QD®porphyrin and the electron tunneling through the ZnS barrier to the outer interface of the QD in conditions of quantum confinement.
Литература
Lehn J.-M. Angew. Chem., Int. Ed. 1988, 27, 89-112. https://doi.org/10.1002/anie.198800891
Balzani V., Gómez-López M., Stoddart J.F. Acc. Chem. Res. 1998, 31, 405-414. https://doi.org/10.1021/ar970340y
Livoreil A., Dietrich-Buchecker C.O., Sauvage J.-P. J. Am. Chem. Soc. 1994, 116, 9399-9400. https://doi.org/10.1021/ja00099a095
Krause S., Feringa, B.L. Nat. Rev. Chem. 2020, 4, 550-562. https://doi.org/10.1038/s41570-020-0209-9
Zenkevich E., von Borczyskowski C. Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics. Singapore: Pan Stanford. 2016. 408 p. https://doi.org/10.1201/9781315364544
Pochan D., Scherman O. Chem. Rev. 2021, 121, 13699-13700. https://doi.org/10.1021/acs.chemrev.1c00884
Jin Z., Dridi N., Palui G., Palomo V., Jokerst J.V., Dawson P.E., Amy Sang Q.-X., Mattoussi H. Anal. Chem. 2023, 95, 2713-2722. https://doi.org/10.1021/acs.analchem.2c03400
Navalón S., Dhakshinamoorthy A., Álvaro M., Ferrer B., García H. Chem. Rev. 2023, 123, 445-490. https://doi.org/10.1021/acs.chemrev.2c00460
Zhong H., Wang M., Ghorbani-Asl M., Zhang J., Ly K.H., Liao Z., Chen G., Wei Y., Biswal B.P., Zschech E., Weidinger I.M., Krasheninnikov A.V., Dong R., Feng X. J. Am. Chem. Soc. 2021, 143, 19992−20000. https://doi.org/10.1021/jacs.1c11158
Ohta K. Physics and Chemistry of Molecular Assemblies. Singapore: World Scientific. 2020. https://doi.org/10.1142/11703
Bertino M.F. Introduction to Nanotechnology. Singapore: World Scientific. 2021. https://doi.org/10.1142/12142
Zhang X., Lu Y., Sun J., Liu Y., Dong H., Li C., Li Y., Jiang L. ACS Materials Lett. 2022, 4, 548−553. https://doi.org/10.1021/acsmaterialslett.1c00844
Li D.J., Li Q.H., Gu Z.G., Zhang J. Nano Lett. 2021, 21, 10012−10018. https://doi.org/10.1021/acs.nanolett.1c03655
Enakieva Y.Y., Zhigileva E.A., Fitch A.N., Chernyshev V.V., Stenina I.A., Yaroslavtsev A.B., Sinelshchikova A.A., Kovalenko K.A., Gorbunova Y.G., Tsivadze A.Yu. Dalton Trans. 2021, 50, 6549-6560. https://doi.org/10.1039/D1DT00612F
Organic Nanophotonics (NATO Science Series II: Mathematics, Physics and Chemistry) (Charra F., Agranovich V.M., Kajzar F., Eds.), New York: Academic Publishers, Kluwer, 2004.
Multiporphyrin Arrays: Fundamentals and Applications (Kim D., Ed.), Singapore: Pan Stanford Publ. Pte. Ltd., 2012. 775 p.
Zenkevich E.I., von Borczyskowski C. Multiporphyrin Self-Assembled Arrays in Solutions and Films: Thermodynamics, Spectroscopy and Photochemistry. In: Handbook of Polyelectrolytes and Their Applications (Tripathy S.K., Kumar J., Nalwa H.S., Eds.) USA: American Scientific Publishers, 2002. Vol. 2, Ch. 11, pp. 301-348.
Fukuzumi S., Lee Y.M., Nam W. ChemPhotoChem. 2018, 2, 121 - 135. https://doi.org/10.1002/cptc.201700146
Hood D., Sahin T., Parkes-Loach P.S., Jiao J., Harris Michelle A., Dilbeck P., Niedzwiedzki D.M., Kirmaier C., Loach P.A., Bocian D.F., Lindsey J.S., Holten D. ChemPhotoChem. 2018, 2, 300 - 313. https://doi.org/10.1002/cptc.201700182
Wibmer L., Lourenco L.M.O., Roth A., Katsukis G., Neves M.G.P., Cavaleiro J.A.S., Tomé J.P.C., Torres T., Guldi D.M. Nanoscale 2015, 7, 5674-5682. https://doi.org/10.1039/C4NR05719H
Biswas K., Urbani M., Sánchez-Grande A., Soler-Polo D., Lauwaet K., Matěj A., Mutombo P., Veis L., Brabec J., Pernal K., Gallego J.M., Miranda R., Écija D., Jelinek P., Torres T., Urgel J.I. J. Am. Chem. Soc. 2022, 144, 12725-12731. https://doi.org/10.1021/jacs.2c02700
Torres T., Bottari G. Organic Nanomaterials: Synthesis, Characterization, and Device Applications. John Wiley & Sons, 2013. 632 p. https://doi.org/10.1002/9781118354377
Jing H., Rong J., Taniguchi M., Lindsey J.S. Coord. Chem. Rev. 2022, 456, 214278. https://doi.org/10.1016/j.ccr.2021.214278
Roy P.P., Kundu S., Valdiviezo J., Bullard G., Fletcher J.T., Liu R., Yang S.J., Zhang P., Beratan D.N., Therien M.J., Makri N., Fleming G.R. J. Am. Chem. Soc. 2022, 144, 6298-6310. https://doi.org/10.1021/jacs.1c12889
Cook L.P., Brewer G., Wong-Ng W. Crystals 2017, 7, 223-245. https://doi.org/10.3390/cryst7070223
Hirao T., Haino T. J. Porphyrins Phthalocyanines 2023, 27, 966-979. https://doi.org/10.1142/S1088424623300082
Zvyagina A.I., Aleksandrov A.E., Martynov A.G., Kalinina M.A. Inorg. Chem. 2021, 60, 15509-15518. https://doi.org/10.1021/acs.inorgchem.1c02147
Francesca S., Wennink J.W.H., Mäkinen P.I., Holappa L.P., Trohopoulus P.N., Ylä-Herttuala S., van Nostrum C., de la Escosura A., Torres T. J. Mater. Chem. B. 2020, 8, 282-289. https://doi.org/10.1039/C9TB02014D
Koifman O.I., Ageeva T.A., Beletskaya I.P., Averin A.D., Yakushev A.A., Tomilova L.G.,.Dubinina T.V., Tsivadze A.Yu., Gorbunova Yu.G., Martynov A.G., Konarev D.V., Khasanov S.S., Lyubovskaya R.N., Lomova T.N., Korolev V.V., Zenkevich E.I., Blaudeck T. , Ch. von Borczyskowski, Zahn D.R.T., Mironov A.F., Bragina N.A., Ezhov A.V., Zhdanova K.A., Stuzhin P.A., Pakhomov G.L., Rusakova N.V., Semenishyn N.N., Smola S.S., Parfenyuk V.I., Vashurin A.S., Makarov S.V., Dereven'kov I.A., Mamardashvili N.Zh., Kurtikyan T.S., Martirosyan G.G., Burmistrov V.А., Aleksandriiskii V.V., Novikov I.V., Pritmov D.A., Grin M.A., Suvorov N.V., Tsigankov A.A., Fedorov A.Yu., Kuzmina N.S., Nyuchev A.V., Otvagin V.F., Kustov A.V., Belykh D.V., Berezin D.B., Solovieva A.B., Timashev P.S., Milaeva E.R., Gracheva Yu.A., Dodokhova M.A., Safronenko A.V., Shpakovsky D.B., Syrbu S.A., Gubarev Yu.A., Kiselev A.N., Koifman M.O., Lebedeva N.Sh., Yurina E.S. Macroheterocycles 2020, 13, 311-467. https://doi.org/10.6060/mhc200814k
He H., Lee S., Liu N., Zhang X., Wang Y., Lynch V.M., Kim D., Sessler J.L., Ke X.-S J. Am. Chem. Soc. 2023, 145, 5, 3047–3054. https://doi.org/10.1021/jacs.2c11788
Koifman O.I., Ageeva T.A., Kuzmina N.S., Otvagin V.F., Nyuchev A.V., Fedorov A.Yu., Belykh D.V., Lebedeva N.Sh., Yurina E.S., Syrbu S.A., Koifman M.O., Gubarev Y.A., Bunin D.A., Gorbunova Yu.G., Martynov A.G., Tsivadze A.Yu., Dudkin S.V., Lyubimtsev A.V., Maiorova L.A., Kishalova M.V., Petrova M.V., Sheinin V.B., Tyurin V.S., Zamilatskov I.A., Zenkevich E.I., Morshnev P.K., Berezin D.B., Drondel E.A., Kustov A.V., Pogorilyy V.A., Noev A.N., Eshtukova-Shcheglova E.A., Plotnikova E.A., Plyutinskaya A.D., Morozova N.B., Pankratov A.A., Grin M.A., Abramova O.B., Kozlovtseva E.A., Drozhzhina V.V., Filonenko E.V., Kaprin A.D., Ryabova A.V., Pominova D.V., Romanishkin I.D., Makarov V.I., Loschenov V.B., Zhdanova K.A., Ivantsova A.V., Bortnevskaya Yu.S., Bragina N.A., Solovieva A.B., Kuryanova A.S., Timashev P.S. Macroheterocycles 2022, 15, 207-302. https://doi.org/10.6060/mhc224870k
Matern J., Maisuls I., Strassert C.A., Fernández G. Angew. Chem., Int. Ed. 2022, 61, e2022084. https://doi.org/10.1002/anie.202203783
Yang F., Dong J., Li Z., Wang Z. ACS Nano 2023, 17, 4102-4133. https://doi.org/10.1021/acsnano.2c10251
Ogawa T., Sinha N., Pfund B., Prescimone A., Wenger O.S. J. Am. Chem. Soc. 2022, 144, 21948-21960. https://doi.org/10.1021/jacs.2c08838
Ho-Yeung Chan M., Wing-Wah Yam V. J. Am. Chem. Soc. 2022, 144, 22805−22825. https://doi.org/10.1021/jacs.2c08551
Faraonov M., Martynov A.G., Polovkova M.A., Khasanov S.S., Gorbunova Yu.G., Tsivadze A.Yu., Otsuka A., Yamochi H., Kitagawa H., Konarev D.V. Magnetochemistry 2023, 9, 36. https://doi.org/10.3390/magnetochemistry9020036
Martynov A.G., Polovkova M.A., Gorbunova Yu.G., Tsivadze A.Yu. Molecules 2022, 27, 6498. https://doi.org/10.3390/molecules27196498
Efros A.L., Brus L.E. ACS Nano 2021, 15, 6192−6210. https://doi.org/10.1021/acsnano.1c01399
Kovalenko M.V., Manna L., Cabot A., Hens Z., Talapin D.V., Kagan C.R., Klimov V.I., Rogach A.L., Reiss P., Milliron D.J., Guyot-Sionnnest P., Konstantatos G., Parak W.J., Hyeon T., Korgel B.A., Murray C.B., Heiss W. ACS Nano 2015, 9, 1012-1057. https://doi.org/10.1021/nn506223h
von Borczyskowski C., Zenkevich E. Tuning Semiconduting and Metallic Quantum Dots: Spectroscopy and Dynamics. Pan Stanford Publishing Pte. Ltd, 2017. 398 p. https://doi.org/10.1201/9781315364636
Wu N., Kirkwood N., Saker Neto N., Pervin R., Mulvaney P., Wong W.W.H. J. Phys. Chem. C 2023, 127, 2116–2126. https://doi.org/10.1021/acs.jpcc.3c00053
Cadena D.M., Sowa J.K., Cotton D.E., Wight C.D., Hoffman C.L., Wagner H.R., Boette J.T., Raulerson E.K., Iverson B.L., Rossky P.J., Roberts S.T. J. Am. Chem. Soc. 2022, 144, 22676−22688. https://doi.org/10.1021/jacs.2c09758
Zenkevich E.I., von Borczyskowski C. Formation Principles and Excited States Relaxation in Self-Assembled Complexes: Multiporphyrin Arrays and "Semiconductor CdSe/ZnS Quantum Dot-Porphyrin" Nanocomposites. In: Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Vol. 22 - Biophysical and Physicochemical Studies of Tetrapyrroles (Kadish K., Smith K.M., Guilard R, Eds.), Singapore: World Scientific Publishing Co. Pte. Ltd, 2012, 67-168. https://doi.org/10.1142/9789814397605_0006
Zenkevich E.I., Sagun E.I., Knyukshto V.N., Stasheuski A.S., Galievsky V.A., Stupak A.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. C 2011, 115, 21535-21545. https://doi.org/10.1021/jp203987r
Sewid F.A., Annas K.I., Dubavik A., Veniaminov A.V., Maslov V.G., Orlova A.O. RSC Adv. 2022, 12, 899-906. https://doi.org/10.1039/D1RA08148A
Rybkin A.Y., Belik A.Y., Goryachev N.S., Mikhaylov P.A., Kraevaya O.A., Filatova N.V., Parkhomenko I.I., Peregudov A.S., Terent'ev A.A., Larkina E.A., Mironov A.F., Troshin P.A., Kotelnikov A.I. Dyes Pigm. 2020, 180, 108411. https://doi.org/10.1016/j.dyepig.2020.108411
Zenkevich E., Blaudeck T., Sheinin V., Kulikova O., Selyshchev O., Dzhagan V., Koifman O., von Borczyskowski C., Zahn D.R.T. J. Mol. Struct. 2021, 1244, 131239. https://doi.org/10.1016/j.molstruc.2021.131239
Yu X.T., Sui S.Y., He Y.X., Yu C.H., Peng Q. Biomater. Adv. 2022, 135, 212725. https://doi.org/10.1016/j.bioadv.2022.212725
Martyanov T.P., Tovstun S.A., Vasil'ev S.G., Martyanova E.G., Spirin M.G., Kozlov A.V., Klimenko L.S., Brichkin S.B., Razumov V.F. J. Nanopart. Res. 2022, 24, 129. https://doi.org/10.1007/s11051-022-05513-4
Zenkevich E., Shulga A., Cichos F., Petrov E.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. B 2005, 109, 8679-8692. https://doi.org/10.1021/jp040595a
Dayal S., Lou Y., Samis A.C.S., Berlin J.C., Kenney M.E., Burda C. J. Am. Chem. Soc. 2006, 128, 13974-13975. https://doi.org/10.1021/ja063415e
Martynenko I.V., Orlova A.O., Maslov V.G., Baranov A.V., Fedorov A.V., Artemyev M. Beilstein J. Nanotechnol. 2013, 4, 895-902. https://doi.org/10.3762/bjnano.4.101
Stupak A., Blaudeck T., Zenkevich E., Krause S., von Borczyskowski C. Phys. Chem. Chem. Phys. 2018, 20, 18579-18600. https://doi.org/10.1039/C8CP02846J
Shu Y.F., Lin X., Qin H.Y, Hu Z., Jin Y.Z., Peng X.G. Angew. Chem. Int. Ed. 2020, 59, 22312-22323. https://doi.org/10.1002/anie.202004857
Kaushik P. Hybrid Nanocomposites: Fundamentals, Synthesis, and Applications, 1st Edition, USA: Jenny Stanford Publishing, 2019.
Kundu S., Patra A. Chem. Rev. 2017, 117, 712-757. https://doi.org/10.1021/acs.chemrev.6b00036
Calvin J., O'Brien E.A., Sedlak A.B., Balan A.D., Alivisatos A.P. ACS Nano 2021, 15, 1407-1420. https://doi.org/10.1021/acsnano.0c08683
Saniepay M., Mi C., Liu Z., Abel E.P., Beaulac R. J. Am. Chem. Soc. 2018, 140, 1725−1736. https://doi.org/10.1021/jacs.7b10649
Chen Y., Smock S.R., Flintgruber A.H., Perras F.A., Brutchey R.L., Rossini A.J. J. Am. Chem. Soc. 2020, 142, 6117−6127. https://doi.org/10.1021/jacs.9b13396
Piveteau L., Morad V., Kovalenko M.V. J. Am. Chem. Soc. 2020, 142, 19413−19437. https://doi.org/10.1021/jacs.0c07338
Buckley J.J., Greaney M.J., Brutchey R.L. Chem. Mater. 2014, 26, 6311−6317. https://doi.org/10.1021/cm503324k
Shen Y., Tan R., Gee M.Y., Greytak A.B. ACS Nano 2015, 9, 3345−3359. https://doi.org/10.1021/acsnano.5b00671
Lee B., Littrell K., Sha Y., Shevchenko E.V. J. Am. Chem. Soc. 2019, 141, 16651−16662. https://doi.org/10.1021/jacs.9b06010
Kilin D.S., Tsemekham K., Zenkevich E.I., Prezhdo O.V., von Borczyskowski C. J. Photochem. Photobiol. A 2007, 190, 342-351. https://doi.org/10.1016/j.jphotochem.2007.02.017
Liu J., Kilina S., Tretiak S., Prezhdo O.V. ACS Nano 2015, 9, 9106-9116. https://doi.org/10.1021/acsnano.5b03255
Kilina S.V., Tamukong P.K., Kilin D.S. Acc. Chem. Res. 2016, 49, 2127−2135. https://doi.org/10.1021/acs.accounts.6b00196
Hartley C.L., Kessler M.L., Dempsey J.L. J. Am. Chem. Soc. 2021, 143, 1251-1266. https://doi.org/10.1021/jacs.0c10658
Du Fossé I., Lal S., Hossaini A.N., Infante I., Houtepen A.J. J. Phys. Chem. C 2021, 125, 23968−23975. https://doi.org/10.1021/acs.jpcc.1c07464
Zito J., Infante I. Acc. Chem. Res. 2021, 54, 1555−1564. https://doi.org/10.1021/acs.accounts.0c00765
Selyshchev O., Dzhagan V., Zenkevich E., Stroyuk O., Raievska O., Sheinin V., Kulikova O., Koifman O., Zahn D.R.T. Electronic interaction between Ag-In-S, Ag-In-S/ZnS quantum dots and quaternary amine aromatic molecules - a photoluminescence quenching study. In: Book of Abstracts of the 14th Int. Symp. on Functional π-Electron Systems, Fπ14, June 2-7, Berlin, 2019, p. 106.
Sheinin V., Kulikova O., Zenkevich E., Selyshchev O., Dzhagan V., Stroyuk O., Raievska O., Koifman O., Zahn D.R.T. Tetra(N-methyl-4-pyridyl)porphyrin sonde report on the surface of AIS/ZnS/GSH quantum dots in water. In: Book of Abstracts of the 1st Int. Conf. on Noncovalent Interactions, ICNI-2019, 2-6 September, Lisbon, Portugal, 2019, p. 82.
Zenkevich E., Sheinin V., Kulikova O., Selyshchev O., Dzhagan V., Stroyuk O., Raievska O., Koifman O., von Borczyskowski C., Zahn D.R.T. Self-assembled nanocomposites based on semiconductor quantum dots and porphyrin molecules: interface chemistry, optical properties and energy relaxation processes. In: Book of Abstracts of Webinar on Materials Science and Nanotechnology. Coalesce Research Group, 33 Market Point Dr., Greenwille SC 29607, USA, July 29-30, 2020, p. 11.
Motevich I.G., Zenkevich E.I., Stroyuk O.L., Raievska O.E., Kulikova О.М., Sheinin V.B., Koifman O.I., Zahn D.R.T., Strekal N.D. J. Appl. Spectrosc. 2020, 87, 926-935. https://doi.org/10.1007/s10812-021-01109-3
Zenkevich E., Sheinin V., Kulikova O., Koifman O. Mathematical Methods in Technologies and Technique 2022, No. 11, 11-15. https://doi.org/10.52348/2712-8873_MMTT_2022_11_15
Zenkevich E., Sheinin V., Kulikova O., Koifman O.. J. Porphyrins Phthalocyanines 2023, 27, 19. https://doi.org/10.1142/S1088424623500323
Zenkevich E., Sheinin V., Kulikova O., Koifman O. J. Appl. Spectrosc. 2023, 90, 18.
[transl. Zhurnal Prikladnoi Spektroskopii 2023, 90(3), 434–446]. https://doi.org/10.1007/s10812-023-01566-y
Sugata S., Yamanouchi S., Matsushima Y. Chem. Pharm. Bull. 1977, 25, 884-889. https://doi.org/10.1248/cpb.25.884
Herrmann O., Mehdi S.H., Corsini A. Can. J. Chem. 1978, 56, 1084-1087. https://doi.org/10.1139/v78-184
Adler A.D., Longo F.R., Finarelli J.D., Goldmacher J., Assour J., Korsakoff L. J. Organ. Chem. 1967, 32, 476-476. https://doi.org/10.1021/jo01288a053
Hambright P., Gore T., Burton M. Inorg. Chem. I976, 15, 2314-2315. https://doi.org/10.1021/ic50163a072
Sheinin V.B., Ivanov D.A., Koifman O.I. Macroheterocycles 2017, 10, 487-495. https://doi.org/10.6060/mhc170833s
Bailey S.L., Hambright P. Inorg. React. Mech. 2001, 3, 51-62. https://doi.org/10.1515/irm-2001-0106
Raevskaya A., Lesnyak V., Haubold D., Dzhagan V., Stroyuk O., Gaponik N., Zahn D.R.T., Eychmüller A. J. Phys. Chem. C 2017, 121, 9032-9042. https://doi.org/10.1021/acs.jpcc.7b00849
Stroyuk O., Raevskaya A., Spranger F., Selyshchev O., Dzhagan V., Schulze S., Zahn D.R.T., Eychmüller A. J. Phys. Chem. C 2018, 122, 13648-13658. https://doi.org/10.1021/acs.jpcc.8b00106
Stroyuk O., Weigert F., Raevskaya A., Spranger F., Würth C., Resch-Genger U., Gaponik N., Zahn D.R.T. J. Phys. Chem. C 2019, 123, 2632-2641. https://doi.org/10.1021/acs.jpcc.8b11835
Sheinin V.B., Kulikova O.M., Lipatova I.M., Yusova A.A., Koifman O.I. Dyes Pigm. 2018, 155, 42-50. https://doi.org/10.1016/j.dyepig.2018.03.026
Sheinin V.B., Kulikova O.M., Koifman O.I. J. Mol. Liq. 2019, 277, 397-408. https://doi.org/10.1016/j.molliq.2018.12.105
Boles M.A., Ling D., Hyeon T., Talapin D.V. Nat. Mater. 2016, 15, 141−153. https://doi.org/10.1038/nmat4526
Ginterseder M., Franke D., Perkinson C.F., Wang L., Hansen E.C., Bawendi M.G. J. Am. Chem. Soc. 2020, 142, 4088−4092. https://doi.org/10.1021/jacs.9b12350
Giansante C. J. Phys. Chem. C 2018, 122, 18110−18116. https://doi.org/10.1021/acs.jpcc.8b05124
De Roo J., De Keukeleere K., Hens Z., Van Driessche I. Dalton Trans. 2016, 45, 13277−13283. https://doi.org/10.1039/C6DT02410F
du Fossé I, ten Brinck S., Infante I., Houtepen A.J. Chem. Mater. 2019, 31, 4575−4583. https://doi.org/10.1021/acs.chemmater.9b01395
Krause M.M., Kambhampati P. Phys. Chem. Chem. Phys. 2015, 17, 18882−18894. https://doi.org/10.1039/C5CP02173A
Duim H., Fang H.-H., Adjokatse S., ten Brink G.H., Marques M.A.L., Kooi B.J., Blake G.R., Botti S., Loi1 M.A. Appl. Phys. Rev. 2019, 6, 031401. https://doi.org/10.1063/1.5088342
Zeng B., Palui G., Zhang C., Zhan N., Wang W., Ji X., Chen B., Mattoussi H. Chem. Mater. 2018, 30, 225−238. https://doi.org/10.1021/acs.chemmater.7b04204
Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C., Bulovic V. ACS Nano 2014, 8, 5863-5872. https://doi.org/10.1021/nn500897c
Blaudeck T., Zenkevich E.I., Abdel-Mottaleb M., Szwaykowska K., Kowerko D., Cichos F., von Borczyskowski C. ChemPhysChem 2012, 13, 959 - 972. https://doi.org/10.1002/cphc.201100711
Zhong C., Sangwan V.K., Kang J., Luxa J., Sofer Z., Hersam M.C., Weiss E.A. J. Phys. Chem. Lett. 2019, 10, 493−499. https://doi.org/10.1021/acs.jpclett.8b03543
Lakowicz J. Principles of Fluorescence Spectroscopy. New York: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
Bellamy L.J. The infra-red spectra of complex molecules (3rd ed.) London: Chapman and Hall Ltd, 1975. https://doi.org/10.1007/978-94-011-6017-9
Groenhof G. Introduction in QM/MM Simulations. In: Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology (Monticelli L., Salonen E., Eds.) New York: Springer Science+Business Media, 2013, 924, Ch. 3. https://doi.org/10.1007/978-1-62703-017-5_3
Hofer T.S., de Visser S.P. Front. Chem. 2018, 6, Article 367. https://doi.org/10.3389/fchem.2018.00357
Tachiya M. Chem. Phys. Lett. 1975, 33, 289-292. https://doi.org/10.1016/0009-2614(75)80158-8
Morris-Cohen A.J., Vasilenko V., Amin V.A., Reuter M.G., Weiss E.A. ACS Nano 2012, 6, 557-565. https://doi.org/10.1021/nn203950s
Beane G., Boldt K., Kirkwood N., Mulvaney P. J. Phys. Chem. C 2014, 118, 18079−18086.
https://doi.org/10.1021/jp502033d
Zenkevich E., Von Borczyskowski C. Structural and Energetic Dynamics in Quantum Dot-Dye Nanoassemblies. In: Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics (Zenkevich EI, von Borczyskowski C, Eds.) USA: Pan Stanford Publishing Pte. Ltd. 2016, Chapter 4, pp 1-148. https://doi.org/10.1201/9781315364544-2
Harris R.D., Bettis H.S., Kodaimati M., He C., Nepomnyashchii,A.B., Swenson N.K., Lian R., Calzada S., Weiss E.A. Chem. Rev. 2016, 116, 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102
Dworak L., Matylitzky V.V., Ren T., Basche T., Wachtveitl J. J. Phys. Chem. C 2014, 118, 4396-4402. https://doi.org/10.1021/jp409807x
Zenkevich E., Stupak A., Göhler C., Krasselt C., von Borczyskowski C. ACS Nano 2015, 9, 2886-2903. https://doi.org/10.1021/nn506941c
Zenkevich E.I., von Borczyskowski C. Photoinduced Relaxation Processes in Self-Assembled Nanostructures: Multiporphyrin Complexes and Composites "Cdsе/Zns Quantum Dot-Porphyrin". In: Multiporphyrin Arrays: Fundamentals and Applications (Kim D., Ed.) Singapore: Pan Stanford Publishing Pte. Ltd. 2012. Ch. 5, pp. 217-288. https://doi.org/10.1201/b11621-6
Sagun E.I., Zenkevich E.I., Knyukshto V.N., Shulga A.M., Starukhin D.A., von Borczyskowski C. Chem. Phys. 2002, 275, 211-237. https://doi.org/10.1016/S0301-0104(01)00517-1
Knyukshto V.N., Sagun, E.I., Shulga A.M., Zenkevich, E.I. J. Appl. Spectrosc. 1998, 65, 900-907. https://doi.org/10.1007/BF02675636
Zenkevich E.I., Chernook A.V., Shulga A.M., Sagun E.I., Gurinovich G.P. Khimicheskaya Fizika 1989, 8, 891-901.
Marcus R.A. Rev. Modern Phys. 1993, 65, 599-610. https://doi.org/10.1103/RevModPhys.65.599
Uno T., Koga M., Sotome H., Miyasaka H., Tamai N., Kobayashi Y. J. Phys. Chem. Lett. 2018, 9, 7098−7104. https://doi.org/10.1021/acs.jpclett.8b03106
Irgen-Gioro S., Yang M., Padgaonkar S., Chang W.J., Zhang Z., Nagasing B., Jiang Y., Weiss E.A. Phys. Rev. 2020, 1, 011305. https://doi.org/10.1063/5.0033263
Förster T. Modern Quantum Chemistry; Sinanoglu, O. Ed.; Academic Press: New York, 1965.
Agranovich V.M., Galanin M.D. Electronic Excitation Energy Transfer in Condensed Matter. Amsterdam, New York: North-Holland Pub. Co. 1982.
Clapp A.R., Medintz I.L., Uyeda H., Brent T., Fisher R., Goldman E.R., Bawendi M.G., Mattoussi H. J. Am. Chem. Soc. 2005, 127, 18212-18221. https://doi.org/10.1021/ja054630i
Gerlach F., Täuber D., von Borczyskowski C. Chem. Phys. Lett. 2013, 572, 90-95. https://doi.org/10.1016/j.cplett.2013.04.034
Franceschetti A., Zunger A., Scholes G.D. J. Phys. Chem. C 2008, 112, 13336−13341. https://doi.org/10.1021/jp805682m
Ray A., Bauri A., Bhattacharya S. J. Mol. Liq. 2018, 263, 64-71. https://doi.org/10.1016/j.molliq.2018.04.035
Hadar I., Halivni S., Even-Dar N., Faust A., Banin U. J. Phys. Chem. C 2015, 119, 3849−3856. https://doi.org/10.1021/jp512678j
Funston A.M., Jasieniak J.J., Mulvaney P. Adv. Mater. 2008, 20, 4274-4280. https://doi.org/10.1002/adma.200703186
Padgaonkar S., Brown P.T., Jeong Y., Cherqui C., Avanaki K.N., López-Arteaga R., Irgen-Gioro S., Wu Y., Sangwan V.K., Schatz G.C., Hersam M.C., Weiss E.A. J. Phys. Chem. C 2021, 125, 15458−15464. https://doi.org/10.1021/acs.jpcc.1c04562
Basko D., La Rocca J.C., Bassani F., Agranovich V.M. Eur. Phys. J. B 1999, 8, 353-362. https://doi.org/10.1007/s100510050700
Dmitriev O.P. Chem. Rev. 2022, 122, 8487-8593. https://doi.org/10.1021/acs.chemrev.1c00648
Atkins P., de Paula J. Atkin's Physical Chemistry. Oxford: Oxford University Press, 2002. p. 577.
Blaudeck T., Zenkevich E., Cichos F., von Borczyskowski C. J. Phys. Chem. C 2008, 112, 20251-20257. https://doi.org/10.1021/jp8074817
Kowalik P., Bujak P., Penkala M., Maroń A.M., Ostrowski A., Kmita A., Gajewska M., Lisowski W., Sobczak J.W., Pron A. Chem. Mater. 2022, 34, 809-825. https://doi.org/10.1021/acs.chemmater.1c03800