Gas-Phase Structure of 4-(4-Hydroxyphenylazo)phthalonitrile - Precursor for Synthesis of Phthalocyanines with Macrocyclic and Azo Chromophores

  • Alexander E. Pogonin Ivanovo State University of Chemistry and Technology
  • Ivan Yu. Kurochkin
  • Alexander V. Krasnov
  • Alyona S. Malyasova
  • Ilya A. Kuzmin
  • Tatyana V. Tikhomirova
  • Georgiy V. Girichev
Ключевые слова: фталонитрилы, азокрасители, молекулярная структура, газовая электронография, масс-спектрометрия, квантовая химия, фталоцианины

Аннотация

Равновесная структура свободных молекул 4-(4-гидроксифенилазо)фталонитрила (p-HPhAPN, C14N4H8O) была впервые исследована с помощью синхронного электронографического-масс-спектрометрического эксперимента, а также с помощью квантово-химических расчетов. Установлено, что p-HPhAPN в паре представлен в виде плоских азо-форм. Цис-транс-изомерия, азо-гидразонная таутомерия и вращения различных фрагментов в p-HPhAPN изучены на теоретических уровнях B3LYP-D3/pcseg-2 и DLPNO-CCSD(T0). Масс-спектр электронного удара p-HPhAPN, являющийся типичным для производных азобензола, был интерпретирован с использованием QCxMS расчетов на уровне теории GFN2-xTB. В связи с возможностями использования p-HPhAPN в получении фталоцианинов, сочетающих в себе макро-циклический и азо- хромофоры, исследовано строение соответствующих фталоцианинатов цинка.

Литература

Ali Y., Hamid A.S., Rashid U. Mini-Reviews Med. Chem. 2018, 18, 1548-1558. https://doi.org/10.2174/1389557518666180524113111

Bafana A., Devi S.S., Chakrabarti T. Environ. Rev. 2011, 19, 350-371. https://doi.org/10.1139/a11-018

Fedele C., Ruoko T.-P., Kuntze K., Virkki M., Priimagi A. Photochem. Photobiol. Sci. 2022, 21, 1719-1734.https://doi.org/10.1007/s43630-022-00262-8

Giles L.W., Faul C.F.J., Tabor R.F. Mater. Adv. 2021, 2, 4152-4164. https://doi.org/10.1039/D1MA00340B

Purkait M.K., Sinha M.K., Mondal P., Singh R. Photoresponsive Membranes. In: Stimuli Responsive Polymeric Membranes, Ch. 4 (Purkait M.K., Sinha M.K., Mondal P., Singh R., Eds.), Academic Press, Elsevier, 2018. pp. 115-144. https://doi.org/10.1016/B978-0-12-813961-5.00004-8

Natansohn A., Rochon P. Chem. Rev. 2002, 102, 4139-4176. https://doi.org/10.1021/cr970155y

Manickasundaram S., Kannan P., Hassan Q.M.A., Palanisamy P.K. J. Mater. Sci. Mater. Electron. 2008, 19, 1045-1053. https://doi.org/10.1007/s10854-007-9450-y

Beharry A.A., Woolley G.A. Chem. Soc. Rev. 2011, 40, 4422-4437. https://doi.org/10.1039/c1cs15023e

Mohr G.J., Müller H., Bussemer B., Stark A., Carofiglio T., Trupp S., Heuermann R., Henkel T., Escudero D., González L. Anal. Bioanal. Chem. 2008, 392, 1411-1418. https://doi.org/10.1007/s00216-008-2428-7

Shikhaliyev N.Q., Kuznetsov M.L., Maharramov A.M., Gurbanov A.V., Ahmadova N.E., Nenajdenko V.G., Mahmudov K.T., Pombeiro A.J.L. CrystEngComm 2019, 21, 5032-5038. https://doi.org/10.1039/C9CE00956F

Naime J., Al Mamun M.S., Aly Saad Aly M., Maniruzzaman M., Badal M.M.R., Karim K.M.R. RSC Adv. 2022, 12, 28034-28042. https://doi.org/10.1039/D2RA04930A

Lee H.Y., Song X., Park H., Baik M.-H., Lee D. J. Am. Chem. Soc. 2010, 132, 12133-12144. https://doi.org/10.1021/ja105121z

Wang X. Trans-Cis Isomerization. In: Azo Polymers. Soft and Biological Matter. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017. pp. 19-56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53424-3_2

Tiago M.L., Ismail-Beigi S., Louie S.G. J. Chem. Phys. 2005, 122, 94311. https://doi.org/10.1063/1.1861873

Duarte L., Fausto R., Reva I. Phys. Chem. Chem. Phys. 2014, 16, 16919-16930. https://doi.org/10.1039/C4CP00240G

Fliegl H., Köhn A., Hättig C., Ahlrichs R. J. Am. Chem. Soc. 2003, 125, 9821-9827. https://doi.org/10.1021/ja034433o

Pogonin A.E., Kurochkin I.Y., Malyasova A.S., Ksenofontova K.V., Koifman O.I. Macroheterocycles 2023, 16, 156-167. https://doi.org/10.6060/mhc235113p

Mahimwalla Z., Yager K.G., Mamiya J., Shishido A., Priimagi A., Barrett C.J. Polym. Bull. 2012, 69, 967-1006. https://doi.org/10.1007/s00289-012-0792-0

Shishido A. Polym. J. 2010, 42, 525-533. https://doi.org/10.1038/pj.2010.45

Chang V.Y., Fedele C., Priimagi A., Shishido A., Barrett C.J. Adv. Opt. Mater. 2019, 7, 1900091. https://doi.org/10.1002/adom.201900091

Kishimoto S., Kitahara S., Manabe O., Hiyama H. J. Org. Chem. 1978, 43, 3882-3886. https://doi.org/10.1021/jo00414a020

Ball P., Nicholls C.H. Dyes Pigm. 1982, 3, 5-26. https://doi.org/10.1016/0143-7208(82)80010-7

Özen A.S., Doruker P., Aviyente V. J. Phys. Chem. A 2007, 111, 13506-13514. https://doi.org/10.1021/jp0755645

Steinwand S., Halbritter T., Rastädter D., Ortiz-Sánchez J.M., Burghardt I., Heckel A., Wachtveitl J. Chem. - A Eur. J. 2015, 21, 15720-15731. https://doi.org/10.1002/chem.201501863

Ngororabanga J.M.V., Dembaremba T.O., Mama N., Tshentu Z.R. Spectrochim. Acta, Part A Mol. Biomol. Spectrosc. 2023, 289, 122202. https://doi.org/10.1016/j.saa.2022.122202

Adegoke O.A., Adesuji T.E., Thomas O.E. Spectrochim. Acta, Part A Mol. Biomol. Spectrosc. 2014, 128, 147-152. https://doi.org/10.1016/j.saa.2014.02.118

Baldini L., Balestri D., Marchiò L., Casnati A. Molecules 2023, 28, 4704. https://doi.org/10.3390/molecules28124704

Demaison J., Vogt N. Molecular Structures from Gas-Phase Electron Diffraction. In: Accurate Structure Determination of Free Molecules, Springer International Publishing, Cham, 2020. pp. 167-204. https://doi.org/10.1007/978-3-030-60492-9_7

Girichev G.V., Giricheva N.I., Kudin L.S., Solomonik V.G., Belova N.V., Butman M.F., Vyalkin D.A., Dunaev A.M., Eroshin A.V., Zhabanov Y.A., Krasnov A.V., Kuzmina L.E., Kuzmin I.A., Kurochkin I.Y., Motalov V.B., Navarkin I.S., Pimenov O.A., Pogonin A.E., Sliznev V.V., Smirnov A.N., Tverdova N.V., Shlykov S.A. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.] 2023, 66(7), 11-30. https://doi.org/10.6060/ivkkt.20236607.6850j

Traetteberg M., Hillmo I., Hagen K. J. Mol. Struct. 1977, 39, 231-239. https://doi.org/10.1016/0022-2860(77)85093-X

Tsuji T., Takashima H., Takeuchi H., Egawa T., Konaka S. J. Phys. Chem. A 2001, 105, 9347-9353. https://doi.org/10.1021/jp004418v

Tikhomirova T.V., Znoiko S.A., Shaposhnikov G.P. Russ. J. Gen. Chem. 2018, 88, 1164-1171. https://doi.org/10.1134/S1070363218060191

Han M., Zhang X., Zhang X., Liao C., Zhu B., Li Q. Polyhedron 2015, 85, 864-873. https://doi.org/10.1016/j.poly.2014.10.026

de la Torre G., Bottari G., Hahn U., Torres T. Functional Phthalocyanines: Synthesis, Nanostructuration, and Electro-Optical Applications. In: Functional Phthalocyanine Molecular Materials (Jiang J., Ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. pp. 1-44. https://doi.org/10.1007/978-3-642-04752-7_1

Claessens C.G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97. https://doi.org/10.1002/tcr.20139

Wöhrle D., Schnurpfeil G., Makarov S.G., Kazarin A., Suvorova O.N. Macroheterocycles 2012, 5, 191-202. https://doi.org/10.6060/mhc2012.120990w

Zhang Y., Lovell J.F. WIREs Nanomedicine and Nanobiotechnology 2017, 9, e1420. https://doi.org/10.1002/wnan.1420

Tverdova N.V., Giricheva N.I., Maizlish V.E., Galanin N.E., Girichev G.V. Int. J. Mol. Sci. 2022, 23, 13922. https://doi.org/10.3390/ijms232213922

Tverdova N.V., Giricheva N.I., Maizlish V.E., Galanin N.E., Girichev G.V. Macroheterocycles 2022, 15, 40-43. https://doi.org/10.6060/mhc214086g

Tyunina V.V., Krasnov A.V., Badelin V.G., Girichev G.V. J. Chem. Thermodyn. 2016, 98, 62-70. https://doi.org/10.1016/j.jct.2016.02.021

Girichev G.V., Utkin A.N., Revichev Y.F. Prib. Tekh. Eksp. 1984, 27, 187-190.

Girichev G.V., Shlykov S.A., Revichev Y.F. Prib. Tekh. Eksp. 1986, 29, 167-169.

Girichev E.G., Zakharov A.V., Girichev G.V., Bazanov M.I. Izv. Vysh. Uchebn. Zaved., Tekst. Prom. 2000, 2, 142-146.

Vishnevskiy Y.V., UNEX [version 1.7], https://unex.vishnevskiy.group (accessed Jan. 10, 2024)

Vishnevskiy Y.V., Zhabanov Y.A. J. Phys. Conf. Ser. 2015, 633, 012076. https://doi.org/10.1088/1742-6596/633/1/012076

Mitzel N.W., Rankin D.W.H. Dalton Trans. 2003, 3650-3662. https://doi.org/10.1039/b307022k

Vishnevskiy Y.V., Abaev M.A., Rykov A.N., Gurskii M.E., Belyakov P.A., Erdyakov S.Y., Bubnov Y.N., Mitzel N.W. Chem. - A Eur. J. 2012, 18, 10585-10594. https://doi.org/10.1002/chem.201200264

Kochikov I.V., Tarasov Y.I., Kuramshina G.M., Spiridonov V.P., Yagola A.G., Strand T.G. J. Mol. Struct. 1998, 445, 243-258. https://doi.org/10.1016/S0022-2860(97)00428-6

Tikhonov D.S., Vishnevskiy Y.V., Rykov A.N., Grikina O.E., Khaikin L.S. J. Mol. Struct. 2017, 1132, 20-27. https://doi.org/10.1016/j.molstruc.2016.05.090

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A.,Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

Becke A.D. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913

Lee C., Yang W., Parr R.G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

Grimme S., Antony J., Ehrlich S., Krieg H. J. Chem. Phys. 2010, 132, 154104. https://doi.org/10.1063/1.3382344

Jensen F. J. Chem. Theory Comput. 2014, 10, 1074-1085. https://doi.org/10.1021/ct401026a

Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. J. Chem. Inf. Model. 2019, 59, 4814-4820. https://doi.org/10.1021/acs.jcim.9b00725

Notes about the Jensen basis sets, https://www.basissetexchange.org/family_notes/jensen/ (accessed April 8, 2024).

Pitman S.J., Evans A.K., R Ireland.T., Lempriere F., McKemmish L.K. J. Phys. Chem. A 2023, 127, 10295-10306. https://doi.org/10.1021/acs.jpca.3c05573

Keith T.A. AIMAll (Version 19.10.12), 2017, http://aim.tkgristmill.com/ (accessed May 14, 2021).

Liakos D.G., Guo Y., Neese F. J. Phys. Chem. A 2020, 124, 90-100. https://doi.org/10.1021/acs.jpca.9b05734

Saitow M., Becker U., Riplinger C., Valeev E.F., Neese F. J. Chem. Phys. 2017, 146, 164105. https://doi.org/10.1063/1.4981521

Riplinger C., Neese F. J. Chem. Phys. 2013, 138, 34106. https://doi.org/10.1063/1.4773581

Riplinger C., Sandhoefer B., Hansen A., Neese F. J. Chem. Phys. 2013, 139, 134101. https://doi.org/10.1063/1.4821834

Neese F., Wennmohs F., Becker U., Riplinger C. J. Chem. Phys. 2020, 152, 224108. https://doi.org/10.1063/5.0004608

Minenkov Y., Bistoni G., Riplinger C., Auer A.A., Neese F., Cavallo L. Phys. Chem. Chem. Phys. 2017, 19, 9374-9391. https://doi.org/10.1039/C7CP00836H

Bruno G., de Souza B., Neese F., Bistoni G. Phys. Chem. Chem. Phys. 2022, 24, 14228-14241. https://doi.org/10.1039/D2CP01623K

Dunning T.H. J. Chem. Phys. 1989, 90, 1007-1023. https://doi.org/10.1063/1.456153

Martin J.M.L. Chem. Phys. Lett. 1996, 259, 669-678. https://doi.org/10.1016/0009-2614(96)00898-6

Minenkov Y., Cavallo L., Peterson K.A. J. Comput. Chem. 2023, 44, 687-696. https://doi.org/10.1002/jcc.27033

Weigend F., Köhn A., Hättig C. J. Chem. Phys. 2002, 116, 3175-3183. https://doi.org/10.1063/1.1445115

Grimme S. Angew. Chem. Int. Edit. 2013, 52, 6306-6312. https://doi.org/10.1002/anie.201300158

Koopman J., Grimme S. ACS Omega 2019, 4, 15120-15133. https://doi.org/10.1021/acsomega.9b02011

Bannwarth C., Ehlert S., Grimme S. J. Chem. Theory Comput. 2019, 15, 1652-1671. https://doi.org/10.1021/acs.jctc.8b01176

Giricheva N.I., Lebedev I.S., Fedorov M.S., Bubnova K.E., Girichev G.V. J. Struct. Chem. 2021, 62, 1976-1987. https://doi.org/10.1134/S0022476621120179

Islyaikin M.K., V Ferro.R., García de la Vega J.M. J. Chem. Soc., Perkin Trans. 2 2002, 17, 2104-2109. https://doi.org/10.1039/B207034K

In: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology.

Moran M.J., Martina K., Baricco F., Tagliapietra S., Manzoli M., Cravotto G. Adv. Synth. Catal. 2020, 362, 2689-2700. https://doi.org/10.1002/adsc.202000127

Zhang C., N. Jiao, Angew. Chem. Int. Edit. 2010, 49, 6174-6177. https://doi.org/10.1002/anie.201001651

Bowie J.H., Lewis G.E., Cooks R.G. J. Chem. Soc. B 1967, 621-628. https://doi.org/10.1039/j29670000621

Schreckenbach S.A., Anderson J.S.M., Koopman J., Grimme S., Simpson M.J., Jobst K.J. J. Am. Soc. Mass Spectrom. 2021, 32, 1508-1518. https://doi.org/10.1021/jasms.1c00078

Bowie J.H., Lawesson S.O., Madsen J.Ø., Nolde C., Schroll G., Williams D.H. J. Chem. Soc. B 1966, 946-951. https://doi.org/10.1039/j29660000946

Vogt N., Savelev D., Giricheva N.I., Girichev G.V. Phys. Chem. Chem. Phys. 2020, 22, 27539-27546. https://doi.org/10.1039/D0CP04423G

Опубликован
2024-06-24
Как цитировать
Pogonin, A., Kurochkin, I., Krasnov, A., Malyasova, A., Kuzmin, I., Tikhomirova, T., & Girichev, G. (2024). Gas-Phase Structure of 4-(4-Hydroxyphenylazo)phthalonitrile - Precursor for Synthesis of Phthalocyanines with Macrocyclic and Azo Chromophores. Макрогетероциклы/Macroheterocycles, 17(2), 92-101. https://doi.org/10.6060/mhc245112p