N-Олигоэтиленгликоль-имидазолиевые производные тиакаликc[4]арена и каликc[4]арена: различие в солюбилизирующих свойствах и обнаружение аденозинфосфатов

  • Elza D. Sultanova
  • Bulat Kh. Gafiatullin Kazan Federal University
  • Evgeny A. Ocherednyuk Kazan Federal University
  • Ramilya I. Garipova Kazan Federal University
  • Anastasia A. Volodina
  • Amina G. Daminova Kazan Federal University
  • Vladimir G. Evtugyn Kazan Federal University
  • Vladimir A. Burilov Kazan Federal University
  • Svetlana E. Solovieva Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
  • Igor S. Antipin Kazan Federal University

Аннотация

Изучена агрегация амфифильных макроциклов на основе каликс[4]аренов в конфигурации конус и тиа[4]каликсаренов в конфигурации 1,3-альтернат с N-олигоэтиленгликоль-имидазолиевыми фрагментами в водной среде. Продемонстрировано, что как образующиеся агрегаты, так и индивидуальные макроциклы обладают способностью солюбилизировать гидрофобный краситель Оранж ОТ. Солюбилизирующая емкость существенно возрастает при переходе от каликс[4]ареновой к тиакаликс[4]ареновой платформе. Исследовано взаимодействие каликс[4]аренов и тиа[4]каликсаренов с дианионным красителем Эозином Н методами УФ-видимой и флуоресцентной спектрофотомерии. Методом конфокальной микроскопии изучены размеры образующихся комплексов макроцикл – Эозин Н. Установлено, что размеры агрегатов варьируются от 350 до 750 нм. Показано, что комплексы макроцикл – Эозин Н могут использоваться в роли сенсоров на аденозинфосфаты, причем система тиакаликс[4]арен – Эозин Н проявляет селективность к аденозинтрифосфату

Литература

Williams G.T., Haynes C.J.E., Fares M., Caltagirone C., Hiscock J.R., Gale P.A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 2021, 50, 2737-2763. https://doi.org/10.1039/D0CS00948B

Washino G., Soto M.A., Wolff S., MacLachlan M.J. Preprogrammed assembly of supramolecular polymer networks via the controlled disassembly of a metastable rotaxane. Commun. Chem. 2022, 5, 155. https://doi.org/10.1038/s42004-022-00774-5

Song Q., Cheng Z., Kariuki M., Hall S.C.L., Hill S.K., Rho J.Y., Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem. Rev. 2021, 121, 13936–13995. https://doi.org/10.1021/acs.chemrev.0c01291

Huang F., Anslyn E.V. Introduction: Supramolecular Chemistry. Chem. Rev. 2015, 115, 6999-7000. https://doi.org/10.1021/acs.chemrev.5b00352

Kumar R., Lee Y.O., Bhalla V., Kumar M., Kim J.S. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014, 43, 4824–4870. https://doi.org/10.1039/C4CS00068D

Steed J.W., Turner D.R., Wallace K.J. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley: West Sussex, UK, 2007; p. 48-101.

Böhmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. 1995, 34, 713–745. https://doi.org/10.1002/anie.199507131

Gutsche, C.D. Calixarenes: an Introduction, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2008; p. 1-276.

Kashapov R.R., Razuvayeva Y.S., Ziganshina A.Y., Mukhitova R.K., Sapunova A.S., Voloshina A.D., Zakharova L.Ya. Macroheterocycles 2019, 12(4), 346-349. https://doi.org/10.6060/mhc190549k

Podyachev S.N., Zairov R.R., Mustafina A.R. 1,3-Diketone Calix[4]arene Derivatives—A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules 2021, 26, 1214. https://doi.org/10.3390/molecules26051214

Guérineau V., Rollet M., Viel S., Lepoittevin B., Costa L., Saint-Aguet P., Laurent R., Roger Ph., Gigmes D., Martini C., Huc V. The synthesis and characterization of giant Calixarenes. Nat. Commun. 2019, 10, 113. https://doi.org/10.1038/s41467-018-07751-4.

Guan Z.-J., Zeng J.-L., Nan Z.-A., Wan X.-K., Lin Yu-M., Wang Q.-M. Thiacalix[4]arene: New protection for metal nanoclusters. Sci. Adv. 2016, 2, 1600323. https://doi.org/10.1126/sciadv.1600323

Basilotta R., Mannino D., Filippone A., Casili G., Prestifilippo A., Colarossi L., Raciti G., Esposito E., Campolo M. Role of Calixarene in Chemotherapy Delivery Strategies. Molecules. 2021, 26, 3963. https://doi.org/10.3390/molecules26133963

Razuvayeva Yu., Kashapov R., Zakharova L. Calixarene-based pure and mixed assemblies for biomedical applications. 14th International Symposium of Macrocyclic and Supramolecular Chemistry (ISMSC2019), Lecce, Italy, 2-6 June 2019. https://doi.org/10.1080/10610278.2020.1725515

Isik A., Oguz M., Kocak A., Yilmaz M. Calixarenes: recent progress in supramolecular chemistry for application in cancer therapy. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 439-449. https://doi.org/10.1007/s10847-022-01134-5

Rathore R., Lindeman S.V., Abdelwahed S.H. Design, Synthesis, Electronic Properties, and X-ray Structural Characterization of Various Modified Electron-Rich Calixarene Derivatives and Their Conversion to Stable Cation Radical Salts. Molecules. 2022, 27, 5994. https://doi.org/10.3390/molecules27185994

Pan Y.-C., Hu X.-Y., Guo D.-S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew. Chem. Int. Ed. 2021, 60, 2768. https://doi.org/10.1002/anie.201916380.

Mostovaya O.A., Vavilova A.A., Stoikov I.I. Supramolecular Systems Based on Thiacalixarene Derivatives and Biopolymers. Colloid J. 2022, 84, 546–562. https://doi.org/10.1134/S1061933X22700041

Giuliani M., Morbioli I., Sansone F., Casnati A. Moulding calixarenes for biomacromolecule targeting. Chem. Commun. 2015, 51, 14140-14159. https://doi.org/10.1039/C5CC05204A

Bagnacani V., Franceschi V., Fantuzzi L., Casnati A., Donofrio G., Sansone F., Ungaro R. Lower Rim Guanidinocalix[4]arenes: Macrocyclic Nonviral Vectors for Cell Transfection. Bioconjugate Chem. 2012, 23, 993-1002. https://doi.org/10.1021/bc2006829

Iki N., Miyano S. Can Thiacalixarene Surpass Calixarene? J. Inclusion Phenom. 2001, 41, 99–105. https://doi.org/10.1023/A:1014406709512

Gafiatullin B.Kh., Radaev D.D., Osipova M.V., Sultanova E.D., Burilov V.A., Solovieva S.E., Antipin I.S. Amphiphilic N-Oligoethyleneglycol-imidazolium Derivatives of p-tert-Butylthiacalix[4]arene: Synthesis, Aggregation and Interaction with DNA. Macroheterocycles 2021, 14, 171-179. https://doi.org/10.6060/mhc210439s

Ocherednyuk E.A., Garipova R.I., Bogdanov I.M., Gafiatullin B.Kh., Sultanova E.D., Mironova D.A., Daminova A.G., Evtugyn V.G., Burilov V.A., Solovieva S.E., Antipin I.S. Amphiphilic N-oxyethylimidazolium calixarenes: Synthesis, micellar solubilization and molecular recognition of Adenine-containing nucleotides. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 648, 129236. https://doi.org/10.1016/j.colsurfa.2022.129236

Bitter I., Csokai V. An expedient route to p-tert-butylthiacalix[4]arene 1,3-diethers via Mitsunobu reactions. Tetrahedron Lett. 2003, 44, 2261–2265. https://doi.org/10.1016/S0040-4039(03)00285-5

Bara J.E., Gabriel C.J., Lessmann S., Carlisle T.K, Finotello A., Gin D.L., Noble R.D. Enhanced CO2 separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res. 2007, 46, 5380–5386. https://doi.org/10.1021/ie070437g

Rodik R.V., Anthony A.-S., Kalchenko V.I., Mely Y., Klymchenko A.S. Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New J. Chem. 2015, 39, 1654-1664. https://doi.org/10.1039/C4NJ01395F

Kästner U., Zana R. Interactions between Quaternary Ammonium Surfactant Oligomers and Water-Soluble Modified Guars. J. Colloid Interface Sci. 1999, 218, 468-479. https://doi.org/10.1006/jcis.1999.6438

Ruiz C.C. A photophysical study of the urea effect on micellar properties of sodium dodecylsulfate aqueous solutions. Colloid Polym. Sci. 1995, 273, 1033-1040. https://doi.org/10.1007/BF00657670

Aguiar J., Carpena P., Molina-Bolıvar J.A., Ruiz C.C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116-122. https://doi.org/10.1016/S0021-9797(02)00082-6

Kalyanasundaram K., Thomas J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039-2044. https://doi.org/10.1021/ja00449a004

Rigg M.W., Liu F.W.J. Solubilization of orange OT and dimethylaminoazobenzene. J. Am. Oil Chem. Soc. 1953, 30, 4-17. https://doi.org/10.1007/BF02639912

Tehrani-Bagha A.R., Holmberg K. Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials 2013, 6, 580-608. https://doi.org/10.3390/ma6020580

Zhiltsova E.P., Pashirova T.N., Ibatullina M.R., Lukashenko S.S., Gubaidullin A.T., Islamov D.R., Kataeva O.N., Kutyreva M.P., Zakharova L.Y. A new surfactant–copper(ii) complex based on 1,4-diazabicyclo[2.2.2]octane amphiphile. Crystal structure determination, self-assembly and functional activity. Phys. Chem. Chem. Phys. 2018, 20, 12688–12699. https://doi.org/10.1039/C8CP01954A

Ren S., Wang M., Wang C., Wang Y., Sun C., Zeng Z., Cui H., Zhao X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers. 2021, 13, 3307. https://doi.org/10.3390/polym13193307

Chakraborty M., Panda A.K. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 81, 458-465. https://doi.org/10.1016/j.saa.2011.06.038

Biswas S., Bhattacharya S.C., Sen P.K., Moulik S.P. Absorption and emission spectroscopic studies of fluorescein dye in alkanol, micellar and microemulsion media. J. Photochem. Photobiol. A: Chem. 1999, 123, 121-128. https://doi.org/10.1016/S1010-6030(99)00028-3

Garg P., Kaur B., Kaur G., Saini S., Chaudhary G.R. A study of the spectral behaviour of Eosin dye in three states of metallosurfactants: Monomeric, micelles and metallosomes. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 610, 125697. https://doi.org/10.1016/j.colsurfa.2020.125697

De S., Das S., Girigoswami A. Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim. Acta A. 2005, 61, 1821-1833. https://doi.org/10.1016/j.saa.2004.06.054

Lichota A., Szabelski M., Krokosz A. Quenching of Protein Fluorescence by Fullerenol C60(OH)36 Nanoparticles. Int. J. Mol. Sci. 2022, 23, 12382. https://doi.org/10.3390/ijms232012382

Sharma R., Kamal A., Mahajan R.K. Detailed study of interactions between eosin yellow and gemini pyridinium surfactants. RSC Adv. 2016, 6, 71692-71704. https://doi.org/10.1039/C6RA12056C

Hwang D., Ramsey J.D., Kabanov A.V. Polymeric Micelles for the Delivery of Poorly Soluble Drugs: from Nanoformulation to Clinical Approval. Adv Drug Deliv Rev. 2020, 156, 80-118. https://doi.org/10.1016/j.addr.2020.09.009

Wang D.-X., Wang M.-X. Exploring Anion−π Interactions and Their Applications in Supramolecular Chemistry. Acc. Chem. Res. 2020, 53, 1364-1380. https://doi.org/10.1021/acs.accounts.0c00243

Kashapov R.R., Kharlamov S.V., Sultanova E.D., Mukhitova R.K., Kudryashova Y.R., Zakharova L.Y., Ziganshina A.Y., Konovalov A.I. Controlling the Size and Morphology of Supramolecular Assemblies of Viologen–Resorcin[4]arene Cavitands. Chem. Eur. J. 2014, 20, 14018-14025. https://doi.org/10.1002/chem.201403721

Castaldi M., Costantino L., Ortona O., Paduano L., Vitagliano V. Mutual Diffusion Measurements in a Ternary System: Ionic Surfactant−Nonionic Surfactant−Water at 25 °C. Langmuir 1998, 14, 5994-5998. https://doi.org/10.1021/la980457a

Burilov V.A., Fatikhova G.A., Dokuchaeva M.N., Nugmanov R.I., Mironova D.A., Dorovatovskii P.V., Khrustalev V.N.; Solovieva S.E., Antipin I.S. Synthesis of new p-tert-butylcalix[4]arene-based polyammonium triazolyl amphiphiles and their binding with nucleoside phosphates. Beilstein J. Org. Chem. 2018, 14, 1980-1993. https://doi.org/10.3762/bjoc.14.173

Rodik R.V., Cherenok S.O., Postupalenko V.Y., Oncul S., Brusianska V., Borysko P., Kalchenko V.I., Mely Y., Klymchenko A.S. Anionic amphiphilic calixarenes for peptide assembly and delivery. J. Colloid Interface Sci. 2022, 624, 270-278. https://doi.org/10.1016/j.jcis.2022.05.124

Wang J., Ding X., Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv. Colloid Interface Sci. 2019, 269, 187-202. https://doi.org/10.1016/j.cis.2019.04.004

Zhou W.-L., Lin W., Chena Y., Liu Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging Chem. Sci. 2022, 13, 7976-7989 https://doi.org/10.1039/D2SC01770A

Patel N., Nandan P., Kumbhani J., Bhatt K., Modi K. A Sulfur Contain Calixarene as a Rapid Cationic and Anionic Sensor. Med. Analy. Chem. Int. J. 2020, 4, 000162. https://doi.org/10.23880/macij-16000162

Kuswandi B., N/a N., Verboom W., Reinhoudt D.N. Tripodal Receptors for Cation and Anion Sensors. Sensors. 2006, 6, 978-1017. https://doi.org/10.3390/s6080978

Rahman Sh., Tomiyasu H., Wang Ch.-Z., Georghiou P.E., Alodhayb A., Carpenter-Warren C.L., Elsegood M.R.J., Teat S.J., Redshaw C., Yamato T. Allosteric binding properties of a 1,3-alternate thiacalix[4]arene-based receptor having phenylthiourea and 2-pyridylmethyl moieties on opposite faces. New J. Chem. 2021, 45, 19235-19243. https://doi.org/10.1039/D1NJ02991F

Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S., Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev. 2015, 115, 7893-7943. https://doi.org/10.1021/cr500553d

You L., Zha D., Anslyn E.V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 2015, 115, 7840-7892. https://doi.org/10.1021/cr5005524

Bojtár M., Kozma J., Szakács Z., Hessz D., Kubinyi M., Bitter I. Pillararene-based fluorescent indicator displacement assay for the selective recognition of ATP. Sens. Actuators B Chem. 2017, 248, 305-310. https://doi.org/10.1016/j.snb.2017.03.163

Ramaiah D., Neelakandan P.P., Nair A.K., Avirah R.R. Functional cyclophanes: promising hosts for optical biomolecular recognition. Chem. Soc. Rev. 2010, 39, 4158-4168. https://doi.org/10.1039/B920032K

Burilov V.A., Mironova D.A., Ibragimova R.R., Nugmanov R.I., Solovieva S.E., Antipin I.S. Detection of sulfate surface-active substances via fluorescentresponse using new amphiphilic thiacalix[4]arenes bearing cationicheadgroups with eosin Y dye. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 515, 41–49. https://doi.org/10.1016/j.colsurfa.2016.12.007

Sultanova E.D., Gazalieva A.M., Makarov E.G., Belov R.N., Evtugyn V.G., Burilov V.A., Solovieva S.E., Antipin I.S. Novel aminocalixarene-modified polydiacetylene vesicles: Synthesis and naked-eye detection of ATP. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 630, 127642. https://doi.org/10.1016/j.colsurfa.2021.127642

Kumar R., Sharma A., Singh H., Suating P., Kim H.S., Sunwoo K., Shim I., Gibb B.C., Kim J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657-9721. https://doi.org/10.1021/acs.chemrev.8b00605

Zhao M., Lv J., Guo D.-Sh. Promising advances of thiacalix[4]arene in crystal structures. RSC Adv. 2017, 7, 10021-10050. https://doi.org/10.1039/C6RA25616C

Опубликован
2023-08-12
Как цитировать
Sultanova, E., Gafiatullin, B., Ocherednyuk, E., Garipova, R., Volodina, A., Daminova, A., Evtugyn, V., Burilov, V., Solovieva, S., & Antipin, I. (2023). N-Олигоэтиленгликоль-имидазолиевые производные тиакаликc[4]арена и каликc[4]арена: различие в солюбилизирующих свойствах и обнаружение аденозинфосфатов. Макрогетероциклы/Macroheterocycles, 16(2), 168-176. https://doi.org/10.6060/mhc235118s