N-Олигоэтиленгликоль-имидазолиевые производные тиакаликc[4]арена и каликc[4]арена: различие в солюбилизирующих свойствах и обнаружение аденозинфосфатов
Аннотация
Изучена агрегация амфифильных макроциклов на основе каликс[4]аренов в конфигурации конус и тиа[4]каликсаренов в конфигурации 1,3-альтернат с N-олигоэтиленгликоль-имидазолиевыми фрагментами в водной среде. Продемонстрировано, что как образующиеся агрегаты, так и индивидуальные макроциклы обладают способностью солюбилизировать гидрофобный краситель Оранж ОТ. Солюбилизирующая емкость существенно возрастает при переходе от каликс[4]ареновой к тиакаликс[4]ареновой платформе. Исследовано взаимодействие каликс[4]аренов и тиа[4]каликсаренов с дианионным красителем Эозином Н методами УФ-видимой и флуоресцентной спектрофотомерии. Методом конфокальной микроскопии изучены размеры образующихся комплексов макроцикл – Эозин Н. Установлено, что размеры агрегатов варьируются от 350 до 750 нм. Показано, что комплексы макроцикл – Эозин Н могут использоваться в роли сенсоров на аденозинфосфаты, причем система тиакаликс[4]арен – Эозин Н проявляет селективность к аденозинтрифосфату
Литература
Williams G.T., Haynes C.J.E., Fares M., Caltagirone C., Hiscock J.R., Gale P.A. Advances in applied supramolecular technologies. Chem. Soc. Rev. 2021, 50, 2737-2763. https://doi.org/10.1039/D0CS00948B
Washino G., Soto M.A., Wolff S., MacLachlan M.J. Preprogrammed assembly of supramolecular polymer networks via the controlled disassembly of a metastable rotaxane. Commun. Chem. 2022, 5, 155. https://doi.org/10.1038/s42004-022-00774-5
Song Q., Cheng Z., Kariuki M., Hall S.C.L., Hill S.K., Rho J.Y., Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem. Rev. 2021, 121, 13936–13995. https://doi.org/10.1021/acs.chemrev.0c01291
Huang F., Anslyn E.V. Introduction: Supramolecular Chemistry. Chem. Rev. 2015, 115, 6999-7000. https://doi.org/10.1021/acs.chemrev.5b00352
Kumar R., Lee Y.O., Bhalla V., Kumar M., Kim J.S. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014, 43, 4824–4870. https://doi.org/10.1039/C4CS00068D
Steed J.W., Turner D.R., Wallace K.J. Core Concepts in Supramolecular Chemistry and Nanochemistry; John Wiley: West Sussex, UK, 2007; p. 48-101.
Böhmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. 1995, 34, 713–745. https://doi.org/10.1002/anie.199507131
Gutsche, C.D. Calixarenes: an Introduction, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2008; p. 1-276.
Kashapov R.R., Razuvayeva Y.S., Ziganshina A.Y., Mukhitova R.K., Sapunova A.S., Voloshina A.D., Zakharova L.Ya. Macroheterocycles 2019, 12(4), 346-349. https://doi.org/10.6060/mhc190549k
Podyachev S.N., Zairov R.R., Mustafina A.R. 1,3-Diketone Calix[4]arene Derivatives—A New Type of Versatile Ligands for Metal Complexes and Nanoparticles. Molecules 2021, 26, 1214. https://doi.org/10.3390/molecules26051214
Guérineau V., Rollet M., Viel S., Lepoittevin B., Costa L., Saint-Aguet P., Laurent R., Roger Ph., Gigmes D., Martini C., Huc V. The synthesis and characterization of giant Calixarenes. Nat. Commun. 2019, 10, 113. https://doi.org/10.1038/s41467-018-07751-4.
Guan Z.-J., Zeng J.-L., Nan Z.-A., Wan X.-K., Lin Yu-M., Wang Q.-M. Thiacalix[4]arene: New protection for metal nanoclusters. Sci. Adv. 2016, 2, 1600323. https://doi.org/10.1126/sciadv.1600323
Basilotta R., Mannino D., Filippone A., Casili G., Prestifilippo A., Colarossi L., Raciti G., Esposito E., Campolo M. Role of Calixarene in Chemotherapy Delivery Strategies. Molecules. 2021, 26, 3963. https://doi.org/10.3390/molecules26133963
Razuvayeva Yu., Kashapov R., Zakharova L. Calixarene-based pure and mixed assemblies for biomedical applications. 14th International Symposium of Macrocyclic and Supramolecular Chemistry (ISMSC2019), Lecce, Italy, 2-6 June 2019. https://doi.org/10.1080/10610278.2020.1725515
Isik A., Oguz M., Kocak A., Yilmaz M. Calixarenes: recent progress in supramolecular chemistry for application in cancer therapy. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 439-449. https://doi.org/10.1007/s10847-022-01134-5
Rathore R., Lindeman S.V., Abdelwahed S.H. Design, Synthesis, Electronic Properties, and X-ray Structural Characterization of Various Modified Electron-Rich Calixarene Derivatives and Their Conversion to Stable Cation Radical Salts. Molecules. 2022, 27, 5994. https://doi.org/10.3390/molecules27185994
Pan Y.-C., Hu X.-Y., Guo D.-S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew. Chem. Int. Ed. 2021, 60, 2768. https://doi.org/10.1002/anie.201916380.
Mostovaya O.A., Vavilova A.A., Stoikov I.I. Supramolecular Systems Based on Thiacalixarene Derivatives and Biopolymers. Colloid J. 2022, 84, 546–562. https://doi.org/10.1134/S1061933X22700041
Giuliani M., Morbioli I., Sansone F., Casnati A. Moulding calixarenes for biomacromolecule targeting. Chem. Commun. 2015, 51, 14140-14159. https://doi.org/10.1039/C5CC05204A
Bagnacani V., Franceschi V., Fantuzzi L., Casnati A., Donofrio G., Sansone F., Ungaro R. Lower Rim Guanidinocalix[4]arenes: Macrocyclic Nonviral Vectors for Cell Transfection. Bioconjugate Chem. 2012, 23, 993-1002. https://doi.org/10.1021/bc2006829
Iki N., Miyano S. Can Thiacalixarene Surpass Calixarene? J. Inclusion Phenom. 2001, 41, 99–105. https://doi.org/10.1023/A:1014406709512
Gafiatullin B.Kh., Radaev D.D., Osipova M.V., Sultanova E.D., Burilov V.A., Solovieva S.E., Antipin I.S. Amphiphilic N-Oligoethyleneglycol-imidazolium Derivatives of p-tert-Butylthiacalix[4]arene: Synthesis, Aggregation and Interaction with DNA. Macroheterocycles 2021, 14, 171-179. https://doi.org/10.6060/mhc210439s
Ocherednyuk E.A., Garipova R.I., Bogdanov I.M., Gafiatullin B.Kh., Sultanova E.D., Mironova D.A., Daminova A.G., Evtugyn V.G., Burilov V.A., Solovieva S.E., Antipin I.S. Amphiphilic N-oxyethylimidazolium calixarenes: Synthesis, micellar solubilization and molecular recognition of Adenine-containing nucleotides. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 648, 129236. https://doi.org/10.1016/j.colsurfa.2022.129236
Bitter I., Csokai V. An expedient route to p-tert-butylthiacalix[4]arene 1,3-diethers via Mitsunobu reactions. Tetrahedron Lett. 2003, 44, 2261–2265. https://doi.org/10.1016/S0040-4039(03)00285-5
Bara J.E., Gabriel C.J., Lessmann S., Carlisle T.K, Finotello A., Gin D.L., Noble R.D. Enhanced CO2 separation selectivity in oligo (ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res. 2007, 46, 5380–5386. https://doi.org/10.1021/ie070437g
Rodik R.V., Anthony A.-S., Kalchenko V.I., Mely Y., Klymchenko A.S. Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New J. Chem. 2015, 39, 1654-1664. https://doi.org/10.1039/C4NJ01395F
Kästner U., Zana R. Interactions between Quaternary Ammonium Surfactant Oligomers and Water-Soluble Modified Guars. J. Colloid Interface Sci. 1999, 218, 468-479. https://doi.org/10.1006/jcis.1999.6438
Ruiz C.C. A photophysical study of the urea effect on micellar properties of sodium dodecylsulfate aqueous solutions. Colloid Polym. Sci. 1995, 273, 1033-1040. https://doi.org/10.1007/BF00657670
Aguiar J., Carpena P., Molina-Bolıvar J.A., Ruiz C.C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116-122. https://doi.org/10.1016/S0021-9797(02)00082-6
Kalyanasundaram K., Thomas J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039-2044. https://doi.org/10.1021/ja00449a004
Rigg M.W., Liu F.W.J. Solubilization of orange OT and dimethylaminoazobenzene. J. Am. Oil Chem. Soc. 1953, 30, 4-17. https://doi.org/10.1007/BF02639912
Tehrani-Bagha A.R., Holmberg K. Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials 2013, 6, 580-608. https://doi.org/10.3390/ma6020580
Zhiltsova E.P., Pashirova T.N., Ibatullina M.R., Lukashenko S.S., Gubaidullin A.T., Islamov D.R., Kataeva O.N., Kutyreva M.P., Zakharova L.Y. A new surfactant–copper(ii) complex based on 1,4-diazabicyclo[2.2.2]octane amphiphile. Crystal structure determination, self-assembly and functional activity. Phys. Chem. Chem. Phys. 2018, 20, 12688–12699. https://doi.org/10.1039/C8CP01954A
Ren S., Wang M., Wang C., Wang Y., Sun C., Zeng Z., Cui H., Zhao X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers. 2021, 13, 3307. https://doi.org/10.3390/polym13193307
Chakraborty M., Panda A.K. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 81, 458-465. https://doi.org/10.1016/j.saa.2011.06.038
Biswas S., Bhattacharya S.C., Sen P.K., Moulik S.P. Absorption and emission spectroscopic studies of fluorescein dye in alkanol, micellar and microemulsion media. J. Photochem. Photobiol. A: Chem. 1999, 123, 121-128. https://doi.org/10.1016/S1010-6030(99)00028-3
Garg P., Kaur B., Kaur G., Saini S., Chaudhary G.R. A study of the spectral behaviour of Eosin dye in three states of metallosurfactants: Monomeric, micelles and metallosomes. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 610, 125697. https://doi.org/10.1016/j.colsurfa.2020.125697
De S., Das S., Girigoswami A. Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim. Acta A. 2005, 61, 1821-1833. https://doi.org/10.1016/j.saa.2004.06.054
Lichota A., Szabelski M., Krokosz A. Quenching of Protein Fluorescence by Fullerenol C60(OH)36 Nanoparticles. Int. J. Mol. Sci. 2022, 23, 12382. https://doi.org/10.3390/ijms232012382
Sharma R., Kamal A., Mahajan R.K. Detailed study of interactions between eosin yellow and gemini pyridinium surfactants. RSC Adv. 2016, 6, 71692-71704. https://doi.org/10.1039/C6RA12056C
Hwang D., Ramsey J.D., Kabanov A.V. Polymeric Micelles for the Delivery of Poorly Soluble Drugs: from Nanoformulation to Clinical Approval. Adv Drug Deliv Rev. 2020, 156, 80-118. https://doi.org/10.1016/j.addr.2020.09.009
Wang D.-X., Wang M.-X. Exploring Anion−π Interactions and Their Applications in Supramolecular Chemistry. Acc. Chem. Res. 2020, 53, 1364-1380. https://doi.org/10.1021/acs.accounts.0c00243
Kashapov R.R., Kharlamov S.V., Sultanova E.D., Mukhitova R.K., Kudryashova Y.R., Zakharova L.Y., Ziganshina A.Y., Konovalov A.I. Controlling the Size and Morphology of Supramolecular Assemblies of Viologen–Resorcin[4]arene Cavitands. Chem. Eur. J. 2014, 20, 14018-14025. https://doi.org/10.1002/chem.201403721
Castaldi M., Costantino L., Ortona O., Paduano L., Vitagliano V. Mutual Diffusion Measurements in a Ternary System: Ionic Surfactant−Nonionic Surfactant−Water at 25 °C. Langmuir 1998, 14, 5994-5998. https://doi.org/10.1021/la980457a
Burilov V.A., Fatikhova G.A., Dokuchaeva M.N., Nugmanov R.I., Mironova D.A., Dorovatovskii P.V., Khrustalev V.N.; Solovieva S.E., Antipin I.S. Synthesis of new p-tert-butylcalix[4]arene-based polyammonium triazolyl amphiphiles and their binding with nucleoside phosphates. Beilstein J. Org. Chem. 2018, 14, 1980-1993. https://doi.org/10.3762/bjoc.14.173
Rodik R.V., Cherenok S.O., Postupalenko V.Y., Oncul S., Brusianska V., Borysko P., Kalchenko V.I., Mely Y., Klymchenko A.S. Anionic amphiphilic calixarenes for peptide assembly and delivery. J. Colloid Interface Sci. 2022, 624, 270-278. https://doi.org/10.1016/j.jcis.2022.05.124
Wang J., Ding X., Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv. Colloid Interface Sci. 2019, 269, 187-202. https://doi.org/10.1016/j.cis.2019.04.004
Zhou W.-L., Lin W., Chena Y., Liu Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging Chem. Sci. 2022, 13, 7976-7989 https://doi.org/10.1039/D2SC01770A
Patel N., Nandan P., Kumbhani J., Bhatt K., Modi K. A Sulfur Contain Calixarene as a Rapid Cationic and Anionic Sensor. Med. Analy. Chem. Int. J. 2020, 4, 000162. https://doi.org/10.23880/macij-16000162
Kuswandi B., N/a N., Verboom W., Reinhoudt D.N. Tripodal Receptors for Cation and Anion Sensors. Sensors. 2006, 6, 978-1017. https://doi.org/10.3390/s6080978
Rahman Sh., Tomiyasu H., Wang Ch.-Z., Georghiou P.E., Alodhayb A., Carpenter-Warren C.L., Elsegood M.R.J., Teat S.J., Redshaw C., Yamato T. Allosteric binding properties of a 1,3-alternate thiacalix[4]arene-based receptor having phenylthiourea and 2-pyridylmethyl moieties on opposite faces. New J. Chem. 2021, 45, 19235-19243. https://doi.org/10.1039/D1NJ02991F
Wu J., Kwon B., Liu W., Anslyn E.V., Wang P., Kim J.S., Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chem. Rev. 2015, 115, 7893-7943. https://doi.org/10.1021/cr500553d
You L., Zha D., Anslyn E.V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 2015, 115, 7840-7892. https://doi.org/10.1021/cr5005524
Bojtár M., Kozma J., Szakács Z., Hessz D., Kubinyi M., Bitter I. Pillararene-based fluorescent indicator displacement assay for the selective recognition of ATP. Sens. Actuators B Chem. 2017, 248, 305-310. https://doi.org/10.1016/j.snb.2017.03.163
Ramaiah D., Neelakandan P.P., Nair A.K., Avirah R.R. Functional cyclophanes: promising hosts for optical biomolecular recognition. Chem. Soc. Rev. 2010, 39, 4158-4168. https://doi.org/10.1039/B920032K
Burilov V.A., Mironova D.A., Ibragimova R.R., Nugmanov R.I., Solovieva S.E., Antipin I.S. Detection of sulfate surface-active substances via fluorescentresponse using new amphiphilic thiacalix[4]arenes bearing cationicheadgroups with eosin Y dye. Colloids Surf. A: Physicochem. Eng. Asp. 2017, 515, 41–49. https://doi.org/10.1016/j.colsurfa.2016.12.007
Sultanova E.D., Gazalieva A.M., Makarov E.G., Belov R.N., Evtugyn V.G., Burilov V.A., Solovieva S.E., Antipin I.S. Novel aminocalixarene-modified polydiacetylene vesicles: Synthesis and naked-eye detection of ATP. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 630, 127642. https://doi.org/10.1016/j.colsurfa.2021.127642
Kumar R., Sharma A., Singh H., Suating P., Kim H.S., Sunwoo K., Shim I., Gibb B.C., Kim J.S. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 2019, 119, 9657-9721. https://doi.org/10.1021/acs.chemrev.8b00605
Zhao M., Lv J., Guo D.-Sh. Promising advances of thiacalix[4]arene in crystal structures. RSC Adv. 2017, 7, 10021-10050. https://doi.org/10.1039/C6RA25616C