Molecular and Electronic Structure, and Electrochemical Study of Oxometal(IV) Tetrabenzoporphyrins, [TBPM] (M = VO, TiO)
Аннотация
Complexes of tetrabenzoporphyrin (TBP) with vanadyl and titanyl were prepared by complexation directly from metal free H2TBP. They were characterized using spectral and electrochemical methods and peculiarities of their molecular and electronic structure were investigated by DFT calculations. Properties of MTBP complexes were compared with corresponding complexes of meso- and b-substituted porphyrins, porphyrazines and phthalocyanines. It is shown that fusion of benzene rings strongly facilitates the oxidation process which occurs at +0.3 V, what is much easier than in the case of the corresponding porphyrins (by 0.4 - 0.5 V) and phthalocyanines (by 0.5-0.7 V). At the same time the reduction of tetrabenzoporhyrin complexes is observed at similar potentials as in the case of meso-aryl and b-alkyl substituted porphyrins (0.9-1.2 V), and by 0.4-0.6 V more difficult than in the case of phthalocyanine complexes. The obtained data evidence that VO and TiO complexes of tetrabenzoporphyrins can be used as donors in organic electronics.
Литература
Tamura Y., Saeki H., Hashizume J., Okazaki Y., Kuzuhara D., Suzuki M., Yamada H. Chem. Commun. 2014, 50, 10379-10381. https://doi.org/10.1039/C4CC03801K
Guide M., Dang X.D., Nguyen T.Q. Adv. Mater. 2011 23, 2313-2319. https://doi.org/10.1002/adma.201003644
Shea P.B., Kanicki J., Ono N. J. Appl. Phys. 2005, 98, 014503. https://doi.org/10.1063/1.1949713
Aramaki S., Sakai Y., Ono N. Appl. Phys. Lett. 2004, 84, 2085-2087. https://doi.org/10.1063/1.1666994
Shea P.B., Kanicki J., Pattison L.R., Petroff P., Kawano M., Yamada H., Ono N. J. Appl. Phys. 2006, 100, 034502. https://doi.org/10.1063/1.2220641
Finikova O., Galkin A., Rozhkov V., Cordero M., Hägerhäll C., Vinogradov S. J. Am. Chem. Soc. 2003, 125, 4882-4893. https://doi.org/10.1021/ja0341687
Rietveld I.B., Kim E., Vinogradov S.A. Tetrahedron 2003, 59, 3821-3831. https://doi.org/10.1016/S0040-4020(03)00432-0
Carvalho C.M.B., Brocksom T.J., de Oliveira K.T. Chem. Soc. Rev. 2013, 42, 3302-3317. https://doi.org/10.1039/c3cs35500d
Gouterman M., Wagnière G.H., Snyder L.C. J. Mol. Spectrosc. 1963, 11, 108-127. https://doi.org/10.1016/0022-2852(63)90011-0
Lee L.K., Sabelli N.H., LeBreton P.R. J. Phys. Chem. 1982, 86, 3926-3931. https://doi.org/10.1021/j100217a009
Nguyen K.A., Pachter R. J. Chem. Phys. 2001, 114, 10757-10767. https://doi.org/10.1063/1.1370064
Theisen R.F., Huang L., Fleetham T., Adams J.B., Li J. J. Chem. Phys. 2015, 142, 094310. https://doi.org/10.1063/1.4913757
Stuzhin P.A., Khelevina O.G. Coord. Chem. Rev. 1996, 147, 41-86. https://doi.org/10.1016/0010-8545(94)01126-5
Ye L., Fang Y., Ou Z., Wang L., Xue S., Sun J., Kadish K.M. J. Porphyrins Phthalocyanines 2018, 22, 1129-1142. https://doi.org/10.1142/S1088424618501067
Chen P., Finikova O.S., Ou Z., Vinogradov S.A., Kadish K.M. Inorg. Chem. 2012, 51, 6200-6210. https://doi.org/10.1021/ic3003367
Edwards L., Gouterman M., Rose C.B. J. Am. Chem. Soc. 1976, 98, 7638-7641. https://doi.org/10.1021/ja00440a031
Koptyaev A.I., Galanin N.E., Travkin V.V., Pakhomov G.L. Dyes Pigm. 2021, 186, 108984. https://doi.org/10.1016/j.dyepig.2020.108984
Lebedev A.Y., Filatov M.A., Cheprakov A.V., Vinogradov S.A. J. Phys. Chem. A 2008, 112, 7723-7733. https://doi.org/10.1021/jp8043626
Bredas J.L. Materials Horizons 2014, 1(1), 17-19. https://doi.org/10.1039/C3MH00098B
Ito S., Ito T., Makihata D., Ishii Y., Saito Y., Oba T. Tetrahedron Lett. 2014, 55, 4390-4394. https://doi.org/10.1016/j.tetlet.2014.06.039
Yanai T., Tew D.P., Handy N.C. Chem. Phys. Lett. 2004, 393, 51-57. https://doi.org/10.1016/j.cplett.2004.06.011
Weigend F., Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. https://doi.org/10.1039/b508541a
Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., & Windus T.L. J. Chem. Inf. Model. 2007, 47, 1045-1052. https://doi.org/10.1021/ci600510j
Feller D. J. Comput. Chem. 1996, 17, 1571-1586. https://doi.org/10.1002/jcc.9
Pritchard B.P., Altarawy D., Didier B., Gibson T.D., Windus T.L. J. Chem. Inf. Model. 2019, 59, 4814-4820. https://doi.org/10.1021/acs.jcim.9b00725
Bannwarth C., Grimme S. Comput. Theor. Chem. 2014, 1040-1041, 45-53. https://doi.org/10.1016/j.comptc.2014.02.023
Martynov A.G., Mack J., May A.K., Nyokong T., Gorbunova Y.G., Tsivadze A.Y. ACS Omega 2019, 4, 7265-7284. https://doi.org/10.1021/acsomega.8b03500
Neese F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78. https://doi.org/10.1002/wcms.81
Neese F. WIREs Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606
Neese F., Wennmohs F.; Chem. Phys. 2009, 356, 98-109. https://doi.org/10.1016/j.chemphys.2008.10.036
Marenich A.V., Cramer C.J., Truhlar D.G. J. Phys. Chem. B 2009, 113, 6378-6396. https://doi.org/10.1021/jp810292n
Reddy D., Chandrashekar T.K. Polyhedron 1993, 12, 627-633. https://doi.org/10.1016/S0277-5387(00)84979-7
Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. Int. J. Mol. Sci. 2022, 23, 939. https://doi.org/10.3390/ijms23020939
Eroshin A.V., Koptyaev A.I., Otlyotov A.A., Minenkov Y., Zhabanov Y.A. Int. J. Mol. Sci. 2023, 24, 7070. https://doi.org/10.3390/ijms24087070
Otlyotov A.A., Ryzhov I.V., Kuzmin I.A., Zhabanov Y.A., Mikhailov M.S., Stuzhin P.A. Int. J. Mol. Sci. 2020, 21, 2923. https://doi.org/10.3390/ijms21082923
Zhabanov Y.A., Ryzhov I.V., Kuzmin I.A., Eroshin A.V., Stuzhin P.A. Molecules 2020, 26, 113. https://doi.org/10.3390/molecules26010113
Ryzhov I.V., Eroshin A.V., Zhabanov Y.A., Finogenov D.N., Stuzhin P.A. Int. J. Mol. Sci. 2022, 23, 5379. https://doi.org/10.3390/ijms23105379
Tverdova N.V., Girichev G.V., Krasnov A.V., Pimenov O.A., Koifman O.I. Struct. Chem. 2013, 24, 883-890. https://doi.org/10.1007/s11224-013-0259-4
Pakhomov G.L., Koptyaev A.I., Yunin P.A., Somov N.V., Semeikin A.S., Rychikhina E.D., Stuzhin P.A. ChemistrySelect. 2023, 8, e202303271. https://doi.org/10.1002/slct.202303271
Zakharov A.V., Girichev G.V. J. Mol. Struct.: THEOCHEM 2008, 851, 183-196. https://doi.org/10.1016/j.theochem.2007.11.008
Shannon R.D. Acta Cryst. 1976, A32, 751-767. https://doi.org/10.1107/S0567739476001551
Stillman M., Mack J., Kobayashi N. J. Porphyrins Phthalocyanines 2002, 6, 296-300. https://doi.org/10.1142/S108842460200035X
Fang Y., Kadish K.M., Chen P., Gorbunova Y., Enakieva Y., Tsivadze A., Guilard R. J. Porphyrins Phthalocyanines 2013, 17, 1035-1045. https://doi.org/10.1142/S1088424613500958
Kadish K.M., Morrison M.M. J. Am. Chem. Soc. 1976, 98, 3326-3328. https://doi.org/10.1021/ja00427a046
Spyroulias G.A., Despotopoulos A.P., Raptopoulou C.P., Terzis A., de Montauzon D., Poilblanc R., Coutsolelos A.G. Inorg. Chem. 2002, 41, 2648 - 2659. https://doi.org/10.1021/ic000738h
Kadish K.M., Morrison M.M. Bioinorg. Chem. 1977, 7, 107-115. https://doi.org/10.1016/S0006-3061(00)80061-7
Furhop J.H., Kadish K.M., Davis D.G. J. Am. Chem. Soc. 1973, 95, 5140-5147. https://doi.org/10.1021/ja00797a008
Mchiri C., Amiri N., Jabli S., Roisnel T., Nasri H. J. Mol. Struct. 2018, 1154, 51-58. https://doi.org/10.1016/j.molstruc.2017.10.032
Kobayashi N., Koshiyama M., Osa T. Inorg. Chem. 1985, 24, 2502-2508. https://doi.org/10.1021/ic00210a009
Clack D.W., Hush N.S., Woolsey I.S. Inorg. Chim. Acta 1976, 19, 129-132. https://doi.org/10.1016/S0020-1693(00)91084-3
Lever A.B.P., Licoccia S., Magnell K., Minor P.C., Ramaswamy B.S. Advances in Chemistry 1982, 201, 237-252. https://doi.org/10.1021/ba-1982-0201.ch011