Исследование конформационного многообразия и молекулярной структуры 5,10,15,20-тетрафенил-21H,23H-порфирина – отсчетная точка для тетрафенилпорфириновых металлокомплексов

  • Ivan Yu. Kurochkin
  • Nina I. Giricheva
  • Alexander V. Krasnov
  • Alexey N. Kiselev
  • Georgiy V. Girichev ИГХТУ
Ключевые слова: тетрафенилпорфирин, металлотетрафенилпорфирины, молекулярная структура, энтальпия сублимации, конформеры

Аннотация

Gas-phase electron diffraction and quantum chemical study of the isolated H2TPP molecule was carried out, which can be considered as a reference point for tetraphenylporphyrin metal complexes. Using Knudsen effusion mass spectrometry, the enthalpy of sublimation of the H2TPP was determined to be 212(4) kJ/mol (535 K). Using DFT/B97D/cc-pVTZ in combination with gas electron diffraction it is shown that the saturated vapor of H2TPP consists of a mixture of conformers. The conformers differ in the mutual orientation of the four phenyl fragments relative to each other and have close energies. Bond lengths and bond angles in conformers were determined. NBO analysis showed a change in the delocalization of the electron density between the phenyl substituents and the macroheterocyclic (MHC) skeleton with a change in the torsion angle. This delocalization is the reason for the non-orthogonal position of phenyl meso-substituents in the conformers of H2TPP and other tetraphenyl substituted porphyrins. Non-covalent interactions between the MHC skeleton and phenyl substituents have been described using the FI-SAPT0 method. The change in geometric and electronic characteristics in the series of molecules H2P, H2TPP, H2FTPP, ZnTPP and PdTPP is considered. Based on Valence Shell Electron Pair Repulsion (VSEPR) theory, an explanation is given for the influence of the substituent on the parameters of the MHC skeleton. Analysis of changes in the energy of frontier orbitals in the indicated series of molecules makes it possible to predict the direction of changes in the red-ox properties of compounds with various modifications of H2TPP.

Литература

Handbook of Porphyrin Science (Kadish K.M., Smith K.M., Guilard R., Eds.), World Scientific: Singapore, 2010, 6 - 10, ISBN 978-9814307185.

Li L.-L., Diau E. W.-G. Chem. Soc. Rev. 2013, 42, 291-304; https://doi.org/10.1039/C2CS35257E

Bonnett R. Chem. Soc. Rev. 1995, 24, 19; https://doi.org/10.1039/cs9952400019

Ding Y., Zhu W.-H, Xie Y. Chem. Rev. 2017, 117, 2203-2256; https://doi.org/10.1021/acs.chemrev.6b00021

Senge M. O., Fazekas M., Notaras E.G.A., Blau W.J. Zawadzka M., Locos O.B., Ni Mhuircheartaigh E.M. Adv. Mater. 2007, 19, 2737-2774, https://doi.org/10.1002/adma.200601850

Pukhovskaya S.G., Dao Tkhe Nam, Ivanova Yu.B., Liulkovich L.S., Semeikin A.S., Syrbu S.A., Kruk M.M. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 325-332, https://doi.org/10.1007/s10847-017-0758-9

Silva P., Vilela S.M.F., Tome J.P.S., Paz F.A. Chem. Soc. Rev. 2015, 44, 6774-6803, https://doi.org/10.1039/C5CS00307E

Hamor M.J., Hamor T.A., Hoard J.L. J. Am. Chem. Soc. 1964, 86, 1938-1942, https://doi.org/10.1021/ja01064a008

Silvers S.J., Tulinsky A. J. Am. Chem. Soc. 1967, 89, 3331-3337, https://doi.org/10.1021/ja00989a036

Kano K., Fukuda K., Wakami H., Nishiyabu R., Pasternack R.F. J. Am. Chem. Soc. 2000, 122, 7494-7502, https://doi.org/10.1021/ja000738g

Li Z., Hu Y., Li T. Mol. Cryst. Liq. Cryst. 2014, 605, 135-145, https://doi.org/10.1080/15421406.2014.884403

Andreev V., Sobolev P., Tafeenko V. TPHPOR16. CSD Commun. (Private Communication) 2018, CCDC, 1554868.

Barker B.L., Stanley G.G., Fronczek R.F. TPHPOR11. CSD Commun. (Private Communication) 2002, CCDC 188202.

Bruckner C., Ogikubo J., McCarthy J.R., Akhigbe J., Hylan, M.A., Daddario P., Worlinsky J.L., Zeller M., Engle J.T., Ziegler C.J., Ranaghan M.J., Sandberg M.N., Birge R.R. J. Org. Chem. 2012, 77, 6480-6494, https://doi.org/10.1021/jo300963m

Light M.E., Bandy T., Stulz E. TPHPOR13. CSD Commun. (Private Communication) 2016, CCDC 1476315.

Han R., Kim S., Janda K.J., Fleischer E.B. J. Porphyrins Phthalocyanines 2018, 22, 355, https://doi.org/10.1142/S1088424618500335

Burmistrov V.A., Trifonova I.P., Islyaikin M.K., Semeikin A.S., Koifman, O.I. ChemistrySelect 2022, 7, e202103677, https://doi.org/10.1002/slct.202103677

Kurochkin I.Y., Pogonin A.E., Otlyotov A.A., Kiselev A.N., Krasnov A.V., Shlykov S.A., Girichev G.V. J. Mol. Struct. 2020, 1221, 128662, https://doi.org/10.1016/j.molstruc.2020.128662

Girichev G.V.: TverdovaN.V., Giricheva N.I., Savelyev D.S., Ol'shevskaya V.A., Ageeva T.A., Zaitsev A.V., Koifman O.I. J. Mol. Struct. 2019, 1183, 137-148, https://doi.org/10.1016/j.molstruc.2019.01.055

Kudin L.S., Dunaev A.M., Motalov V.B., Cavallo L., Minenkov Y. J. Chem. Thermodyn. 2020, 151, 106244, https://doi.org/10.1016/j.jct.2020.106244

Deachapunya S., Stefanov A., Berninger M., Ulbricht H., Reiger E., Doltsinis N. L., Arndt M. J. Chem. Phys. 2007, 126, 164304, https://doi.org/10.1063/1.2721563

Stefanov A., Stibor A., Dominguez-Clarimon A., Arndt M. J. Chem. Phys. 2004, 121, 6935- 6940, https://doi.org/10.1063/1.1792551

Torres L.A., Campos M., Enrı́quez E., Patiсo R. J. Chem. Thermodyn. 2002, 34, 293-302, https://doi.org/10.1006/jcht.2001.0920

Perlovich G.L., Golubchikov O.A., Klueva M.E. J. Porphyrins Phthalocyanines 2000, 4, 699-706, https://doi.org/10.1002/1099-1409(200012)4:8<699::AID-JPP284>3.0.CO;2-M

Golubchikov O., Perlovich G. In: Advances in Chemistry of Porphyrins [Успехи химии порфиринов] (Golubchikov O.A., Ed.), St. Petersburg, 1997, Vol. 1, p. 223-245.

Edwards L., Dolphin D.H., Gouterman M., Adler A.D. J. Mol. Spectrosc. 1971, 38, 16-32, https://doi.org/10.1016/0022-2852(71)90090-7

Bonderman D.P., Cater E.D., Bennett W.E. J. Chem. Eng. Data 1970, 15, 396-400, https://doi.org/10.1021/je60046a004

Tverdova N.V., Giricheva N.I., Maizlish V.E., Galanin N.E. Girichev G.V. Int. J. Mol. Sci. 2022, 23, 13922, https://doi.org/10.3390/ijms232213922

Berezin D.B. Macrocyclic Effect and Structural Chemistry of Porphyrins [Макроциклический эффект и структурная химия порфиринов] URSS, Krasand: Moscow, Russia, 2010, ISBN 978-5-396-00112-1.

Koifman O.I., Ageeva T.A., Beletskaya I.P., et al. Macroheterocycles. 2020, 13, 311-467, https://doi.org/10.6060/mhc200814k

Becke A.D. J. Chem. Phys. 1993, 98, 5648-5653, https://doi.org/10.1063/1.464913

Becke A.D. Phys. Rev. A. 1988, 38, 3098-3101, https://doi.org/10.1103/PhysRevA.38.3098

Lee C., Yang W., Parr R.G. Phys. Rev. B 1988, 37, 785-789, https://doi.org/10.1103/PhysRevB.37.785

Grimme S. J. Comp. Chem. 2006, 27, 1787-1799, https://doi.org/10.1002/jcc.20495

Dunning T.H. Jr. J. Chem. Phys. 1989, 90, 1007-1024, https://doi.org/10.1063/1.456153

Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. 2004. Available online: http://www.chem.wisc.edu/~nbo5 (accessed on 20 March 2023).

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09 (Gaussian, Inc., Wallingford CT), 2009, Available online: https://gaussian.com/glossary/g09/ (accessed on 20 March 2023).

Vishnevskiy Y.V., Zhabanov Y.A. J. Phys. Conf. Ser. 2015, 633, 012076, https://doi.org/10.1088/1742-6596/633/1/012076

Sipachev V.A. J. Mol. Struct. (Theochem.) 1985, 121, 143-151, https://doi.org/10.1016/0166-1280(85)80054-3

Zhurko G.A., Zhurko D.A. ChemCraft. Version 1.6, Build 312. Available online: https://www.chemcraftprog.com/index.html (accessed on 20 March 2023).

Johnson E.R., Keinan S., Mori-Sanchez P., Contreras-Garcia J., Cohen A.J., Yang W. J. Am. Chem. Soc. 2010, 132, 6498-6506, https://doi.org/10.1021/ja100936w

Lu T., Chen F. J. Comput. Chem. 2012, 33, 580-592.

https://doi.org/10.1002/jcc.22885

Jeziorski B., Moszynski R., Szalewicz K. Chem. Rev. 1994, 94, 1887-1930, https://doi.org/10.1021/cr00031a008

Parrish R.M., Parker T.M., Sherrill C.D. J. Chem. Theory Comput. 2014, 10, 4417-4431, https://doi.org/10.1021/ct500724p

Parrish R.M., Gonthier J.F., Corminbeuf C., Sherrill C.D. J. Chem. Phys. 2015, 143, 051103, https://doi.org/10.1063/1.4927575

Smith D.G.A., Burns L.A., Simmonett A.C., Parrish R.M., et al. J. Chem. Phys. 2020, 152, 184108, doi: 10.1063/5.0006002.https://doi.org/10.1063/5.0006002

Lindsey J.S., Hsu H.C., Schreiman I.C. Tetrahedron Lett. 1986, 27, 4969-4970, https://doi.org/10.1016/S0040-4039(00)85109-6

Girichev G.V., Utkin A.N., Revichev F. Instruments and Experimental Technique [Приборы и техника эксперимента] 1984, 27, 187.

Girichev G.V., Shlykov S.A., Revichev Y.F. Instruments and Experimental Technique [Приборы и техника эксперимента] 1986, 4, 167.

Girichev G.V., Shlykov S.A., Petrova V.N., Subbotina N.Y., Lapshina S.B., Danilova T.G. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya [ChemChemTech] 1988, 31(8), 46-51.

Girichev E.G., Zakharov A.V., Girichev G.V., Bazanov M. I. Izv. Vyssh. Uchebn. Zaved., Tekhnol. Tekst. Prom. 2000, 2, 142-146.

Vishnevski Y.V., UNEX [1.6], Available online: https://unex.vishnevskiy.group (accessed Mon Sep 11 2023)

Doms L., Geise H., Van Alsenoy C., Van Den Enden L., Schafer L. J. Mol. Struct. 1985, 129, 299-314. https://doi.org/10.1016/0022-2860(85)80173-3

Hargittai I., Chamberland B. Comput. Math. Appl. 1986, 12, 1021-1038, https://doi.org/10.1016/0898-1221(86)90438-4

Опубликован
2023-12-19
Как цитировать
Kurochkin, I., Giricheva, N., Krasnov, A., Kiselev, A., & Girichev, G. (2023). Исследование конформационного многообразия и молекулярной структуры 5,10,15,20-тетрафенил-21H,23H-порфирина – отсчетная точка для тетрафенилпорфириновых металлокомплексов. Макрогетероциклы/Macroheterocycles, 16(4), 249-260. https://doi.org/10.6060/mhc235502g
Раздел
Порфирины