Monomeric and Tetrameric Forms of Petroporphyrin VO-EtioP-III: Effect of Solid-State Aggregation on Electronic Absorption Spectra
Аннотация
Recently, we have reported solid-state structure of vanadyl etioporphyrin-III (VO-EtioP-III) and its strong impact on the electronic absorption spectra [doi: 10.1002/slct.202303271]. VO-EtioP-III is one of the most abundant petroporphyrins, so issues related to its identification by optical methods in monomeric and aggregated forms require more detailed study. Here, the quantum chemical calculations of electronic structure of VO-EtioP-III as a single molecule and as a tetramer, geometry of which coincides with the unit cell, were used to assess the relationship between crystal packing and absorption spectra.
Литература
Gray M., Yarranton H., Chacón-Patiño M., Rodgers R., Bouyssière B., Giusti P. Energy Fuels 2021, 35, 18078-18103. https://doi.org/10.1021/acs.energyfuels.1c01837
Pakhomov G.L., Koptyaev A.I., Yunin P.A., Somov N.V., Semeikin A.S., Rychikhina E.D., Stuzhin P.A. ChemistrySelect 2023, 8, e202303271. https://doi.org/10.1002/slct.202303271
Grimme S., Brandenburg J.G., Bannwarth Ch., Hansen A. J. Chem. Phys. 2015, 143, 054107. https://doi.org/10.1063/1.4927476
Bannwarth Ch., Grimme S. Comput. Theor. Chem. 2014, 1040–1041, 45–53. https://doi.org/10.1016/j.comptc.2014.02.023
Martynov A.G., Mack J., May A.K., Nyokong T., Gorbunova Y.G., Tsivadze A.Yu. ACS Omega 2019, 4, 7265−7284. https://doi.org/10.1021/acsomega.8b03500
Neese F. WIREs Comput. Mol. Sci. 2012, 2, 73–78. https://doi.org/10.1002/wcms.81
Neese F. WIREs Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606
Kato M., Yoshizawa H., Nakaya M., Kitagawa Y., Okamoto K., Yamada T., Yoshino M., Tanaka K., Onoe J. Sci. Rep. 2022, 12, 8810. https://doi.org/10.1038/s41598-022-12990-z
Keith T.A. TK AIMAll Version 16.01.09. Gristmill Software, Overland Park KS, USA, 2017. https://aim.tkgristmill.com
Koifman O.I., Rychikhina E.D., Travkin V.V., Sachkov Y.I., Stuzhin P.A., Somov N.V., Yunin P.A., Zhabanov Y.A., Pakhomov G.L. ChemPlusChem 2023, 88, e202300141. https://doi.org/10.1002/cplu.202300141
Shannon R.D. Acta Crystallogr., Sect. A 1976, 32, 751–767. https://doi.org/10.1107/S0567739476001551
Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. Int. J. Mol. Sci. 2022, 23, 939. https://doi.org/10.3390/ijms23020939
Belosludov R.V., Nevonen D., Rhoda H.M., Sabin J.R., Nemykin V.N. J. Phys. Chem. A 2019, 123, 132–152. https://doi.org/10.1021/acs.jpca.8b07647
Nemykin V.N., Hadt R.G., Belosludov R.V., Mizuseki H., Kawazoe Y. J. Phys. Chem. A 2007, 111, 12901-12913. https://doi.org/10.1021/jp0759731
Travkin V.V., Semikov D.A., Stuzhin P.A., Skvortsov I.A., Pakhomov G.L. Appl. Sci. 2023, 13, 1211. https://doi.org/10.3390/app13021211
Bader R.F.W. Atoms in Molecules. In: Encyclopedia of Computational Chemistry, John Wiley & Sons, Ltd: Chichester, UK, 2002. https://doi.org/10.1002/0470845015.caa012