Molecular Details of the Interaction of Sorafenib with 2-Hydroxypropyl-β-cyclodextrin

  • Thi Lan Pham Insitute for Tropical Technology, Vietnam Academy of Science and Technology
  • Van Cuong Bui Insitute for Tropical Technology, Vietnam Academy of Science and Technology
  • Andrey S. Kuznetsov Gubkin University
  • Xuan Minh Vu Insitute for Tropical Technology, Vietnam Academy of Science and Technology
  • Thi My Hanh Le Insitute for Tropical Technology, Vietnam Academy of Science and Technology
  • Tatyana R. Usacheva Ivanovo State University of Chemistry and Technology
  • Jenny Dinh Nhu Zhang Insitute for Tropical Technology, Vietnam Academy of Science and Technology
  • Minh Bao Ngoc Tran Insitute for Tropical Technology, Vietnam Academy of Science and Technology
  • Irina M. Le-Deygen Lomonosov Moscow State University, Chemical Department
Ключевые слова: cyclodextrins, guest - host complex, sorafenib, ATR-FTIR spectroscopy, FTIR microscopy

Аннотация

Present study addresses the molecular aspects of the interaction between the anticancer drug sorafenib and 2-hydroxy-propyl-β-cyclodextrin. Formation of the complex was confirmed by means of powder X-ray diffraction. Infrared microscopy confirmed uniform distribution of sorafenib and 2-hydroxypropyl-β-cyclodextrin. The detailed mechanism of complex formation in an aqueous media was examined using ATR-FTIR spectroscopy. The inclusion of the pyridine ring of sorafenib in the tori of cyclodextrin has been demonstrated, as well as the interaction of the active molecule with the sugar backbone of the carrier. Obtained results provided new details in the mechanisms of complex formation between anticancer drugs and cyclodextrin’s torus.

Литература

Iyer R., Fetterly G., Lugade A., Thanavala Y. Expert Opin. Pharmacother. 2010, 11, 1943-1955. https://doi.org/10.1517/14656566.2010.496453

Jiang S., Qin Y., Wu S., Xu S., et al. J. Chem. Eng. Data 2017, 62, 259-267. https://doi.org/10.1021/acs.jced.6b00630

Guo Y., Zhong T., Duan XC. Zhang S., et al. Drug Delivery 2017, 24, 270-277. https://doi.org/10.1080/10717544.2016.1245371

Su Y., Wang K., Li Y., Song W., et al. Nanomedicine 2018, 13, 0046. https://doi.org/10.2217/nnm-2018-0046

Davis M.E., Brewster M.E. Nat. Rev. Drug Discov. 2004, 3, 1023-1035. https://doi.org/10.1038/nrd1576

Bondi M.L., Scala A., Sortino G., Amore E., et al. Biomacromolecules. 2015, 16, 3784-3791.

https://doi.org/10.1021/acs.biomac.5b01082

Aman A., Ali S., Mahalapbutr P., Krusong K., et al. RSC Advances. 2023, 13, 27244 -27254. https://doi.org/10.1039/D3RA03867J

Shukla S., Goyal M., Kanabar D., Ayehuniein S., et al. J. Mol. Liq. 2024, 401, 124701. https://doi.org/10.1016/j.molliq.2024.124701

Bui V.C., Pham T.L., Nguyen T.L., Tran T.K.C., Le T.M.H., Vu X.M., Deygen I.M., Nguyen C.A., Mai T.T., Shuib R.K. Pure Appl. Chem. 2024, 96, 1091-1099. https://doi.org/10.1515/pac-2024-0024

Deygen I.M., Seidl C., Koelmel D.K., Bednarek C., et al. Langmuir 2016, 32, 10861-10869. https://doi.org/10.1021/acs.langmuir.6b01023

Skuredina A.A., Tychinina A.S., Le-Deygen I.M., Golyshev S.A., Belogurova N.G., Kudryashova E.V. React. Funct. Polym. 2021, 159, 104811. https://doi.org/10.1016/j.reactfunctpolym.2021.104811

Ebadi M., Bullo S., Buskara K., Hussein M.Z., Fakurazi S., Pastorin G. Sci. Rep. 2020, 10, 21521. https://doi.org/10.1038/s41598-020-76504-5

Truong D.H., Tran T.H., Ramasamy T., Choi J.Y., Choi H.G., Yong C.H., Kim J.O. Powder Technol. 2015, 283, 260-265. https://doi.org/10.1016/j.powtec.2015.04.044

Ruman U., Buskaran K., Pastorin G., Masarudin M.J., Fakurazi S., Hussein M.Z. Nanomaterials 2021, 11, 497. https://doi.org/10.3390/nano11020497

Periasamy R., Nayaki S.K., Sivakumar K., Ramasamy G. J. Mol. Liq. 2020, 316, 113843. https://doi.org/10.1016/j.molliq.2020.113843

Deygen I.M., Skurending A.A., Kudryashova E.V. Anal Bioanal. Chem. 2017, 409, 6451-6462. https://doi.org/10.1007/s00216-017-0590-5

Grdadolnik J., Marechal Y. J. Mol. Struct. 2002, 615, 177-189. https://doi.org/10.1016/S0022-2860(02)00214-4

Deygen I.M., Safronova A.S., Kolmogorov I.M., Skuredina A.A., Kudryashova E.V. Russ J. Bioorg. Chem. 2022, 48, 710-719. https://doi.org/10.1134/S1068162022040148

Опубликован
2024-12-24
Как цитировать
Pham, T. L., Bui, V. C., Kuznetsov, A., Vu, X. M., Le, T. M. H., Usacheva, T., Zhang, J. D. N., Tran, M. B. N., & Le-Deygen, I. (2024). Molecular Details of the Interaction of Sorafenib with 2-Hydroxypropyl-β-cyclodextrin. Макрогетероциклы/Macroheterocycles, 17(4), 341-345. https://doi.org/10.6060/mhc245799l
Раздел
Циклодекстрины