Preparation and Electrochemically Catalytic Hydrogen Evolution of Co(III)corrole Copolymerized with Mono-, Bis- and Tri-Thiophenes
Аннотация
A series of conductive polymers of thiophene-substituted CoШcorrole copolymerized with mono-, bis- and tri-thiophenes have been prepared by electrochemical polymerization. Compared with the CoШcorrole monomer, the electrocatalytic hydrogen evolution performance was significantly improved. In particular, when the molar ratio of CoШcorrole and bithiophene is 10:1, the conductive polymer prepared shows better electrocatalytic hydrogen evolution performance. In addition, when comparing the effect of chain length of thiophene, CoШcorrole-trithiophene showed the greatest improvement on the hydrogen evolution performance, followed by bis- and mono-thiophene.
Литература
Lin L., Zhang Q., Ni Y.X., et al. Chem. 2022, 8, 1822-1854. https://doi.org/10.1016/j.chempr.2022.03.027
Fabretto M.V., Evans D.R., Mueller M., et al. Chem. Mater. 2012, 24, 3998-4003. https://doi.org/10.1021/cm302899v
Kaur G., Adhikari R., Cass P., et al. RSC Adv. 2015, 5, 37553-37567. https://doi.org/10.1039/C5RA01851J
Liu Y.S., Lyu S.S., Wen F.L., et al. J. Mater. Sci. Technol. 2024, 172, 33-50. https://doi.org/10.1016/j.jmst.2023.08.002
Das T.K., Prusty S. Polym-Plast. Technol. 2012, 51, 1487-1500. https://doi.org/10.1080/03602559.2012.710697
Alegret N., Dominguez A.A., Mecerreyes D. Biomacromolecules 2018, 20, 73-89. https://doi.org/10.1021/acs.biomac.8b01382
Gerard M., Chaubey A., Malhotra B.D. Biosens. Bioelectron. 2002, 17, 345-359. https://doi.org/10.1016/S0956-5663(01)00312-8
Zhu T.Y., Sternlicht H., Ha Y., et al. Nat. Energy 2023, 8, 129-137. https://doi.org/10.1038/s41560-022-01176-6
Chouki T., Machreki M., Emin S. Int. J. Hydrogen Energy 2020, 45, 21473-21482. https://doi.org/10.1016/j.ijhydene.2020.05.257
Liu J.L., Tang D.Y., Hou W.W., et al. J. Energy Storage 2023, 74(A), 109329. https://doi.org/10.1016/j.est.2023.109329
Yan J., Sy S., Wang H., et al. Int. J. Electrochem. Sci. 2020, 15, 12644-12653. https://doi.org/10.20964/2020.12.68
Qiang G., Wang W., Ma Y., et al. Talanta 2004, 62, 477-482. https://doi.org/10.1016/j.talanta.2003.08.017
Wu H., Lian K. J. Power Sources 2014, 271, 534-537. https://doi.org/10.1016/j.jpowsour.2014.08.034
Kim S., Jang L.K., Park H.S., et al. Sci. Rep. 2016, 6, 30475. https://doi.org/10.1038/srep30475
Ranathunge T.A., Ngo D.T., Karunarathilaka D., et al. J. Mater. 2020, 8, 5934-5940. https://doi.org/10.1039/C9TC06945C
Liu P., Wang X., Li H.D. Synth. Met. 2013, 181, 72-78. https://doi.org/10.1016/j.synthmet.2013.08.010
Rueda F.C.G., González J.T. Electrochim. Acta 2020, 347, 136272. https://doi.org/10.1016/j.electacta.2020.136272
Kitani A., Satoguchi K., Tang H.Q., et al. Synth. Met. 1995, 69, 131-132. https://doi.org/10.1016/0379-6779(94)02388-F
Cao G., Cui H.H., Wang L.L., et al. ACS Appl. Electron. Mater. 2020, 2, 2750-2759. https://doi.org/10.1021/acsaelm.0c00457
Sharma P.S., Pietrzyk-Le A., D'Souza F., et al. Anal. Bioanal. Chem. 2012, 402, 3177-204. https://doi.org/10.1007/s00216-011-5696-6
Lee K., Vikneshvaran S., Lee H., et al. Int. J. Hydrogen Energy 2024, 51(C), 1184-1196. https://doi.org/10.1016/j.ijhydene.2023.11.037
Wei W., Liang H.W., Parvez K., Zhuang X.D., et al. Angew. Chem. Int. Ed. 2014, 126, 1596-1600. https://doi.org/10.1002/ange.201307319
Feng J.X., Xu H., Ye S.H., et al. Angew. Chem. Int. Ed. 2017, 56, 8120-8124. https://doi.org/10.1002/anie.201702934
Ma D.D., Han S.G., Cao C., et al. Energy Environ. Sci. 2021, 14, 1544-1552. https://doi.org/10.1039/D0EE03731A
Zheng Y., Jiao Y., Li L.H., et al. ACS Nano 2014, 8, 5290-5296. https://doi.org/10.1021/nn501434a
Li M.S., Ma X.B., Luque R., et al. Catal. Today 2021, 368, 1-290. https://doi.org/10.1016/j.cattod.2021.01.008
Zhao X.J., Li S., Cheng H.F., et al. ACS Appl. Mater. Interfaces 2018, 10, 3912-3920. https://doi.org/10.1021/acsami.7b14919
Zhang X.H., Zhang X.F., Zhu W.H., et al. Dalton Trans. 2022, 51, 6177-6185. https://doi.org/10.1039/D2DT00515H
Darby M.T., Réocreux R., Michaelides A., et al. ACS Catal. 2018, 8, 5038-5050. https://doi.org/10.1021/acscatal.8b00881
Patra B.C., Khilar S., Manna R.N., et al. ACS Catal. 2017, 7, 6120-6127. https://doi.org/10.1021/acscatal.7b01067
Liu L., Zha D.W., Wang Y., et al. Int. J. Hydrogen Energy 2014, 39, 14712-14719. https://doi.org/10.1016/j.ijhydene.2014.07.040