Спектрально-люминесцентные и фотофизические свойства свободных оснований корролов
Аннотация
Corroles are the brightest representatives of the contracted tetrapyrrolic macrocycles whose electronic structure, spectral-luminescent and photophysical properties are quite different from those of porphyrins. To date the number of reviews has appeared dealing with the synthesis and applications studies, but much less attention has been paid to the results of the fundamental studies on the electronic structure, aromaticity and photophysics of these compounds. This review aims to summarize the peculiarities of the spectral-luminescent and photophysical properties of the free base corroles unraveled in last twenty years.
Литература
Paolesse R., Synthesis of Corroles. In: The Porphyrin Handbook, Vol. 2 (Kadish K.M., Smith K.M., Guillard R., Eds.), San Diego: World Scientific, 2000, 201-232.
Berezin D.B., Karimov D.R., Kustov A.V., Corroles and Their Derivatives: Synthesis, Properties, Prospects of Prac-tical Applications, Moscow: LENAND, 2018, 304 p. [Березин Д.Б., Каримов Д.Р., Кустов А.В. Корролы и их произ-водные: Синтез, свойства, перспективы практического применения, URSS. 2018. 304 с. ISBN 978-5-9710-5293-7].
Kruk M.M., Klenitsky D.V., Maes W. Macroheterocycles 2019, 12, 58-67. https://doi.org/10.6060/mhc190229k
Capar J., Conradie J., Beavers C.M., Ghosh A. J. Phys. Chem. A. 2015, 119, 3452-3457. https://doi.org/10.1021/jp511188c
Kruk M.M., Ngo T.H., Savva V.A., Starukhin A.S., Dehaen W., Maes W. J. Phys. Chem. A. 2012, 116, 10704-10711. https://doi.org/10.1021/jp305327c
Beenken W.J.D., Presselt M., Ngo T.H., Dehaen W., Maes W., Kruk M.M. J. Phys. Chem. A. 2014, 118, 862-871. https://doi.org/10.1021/jp411033h
Fliegl H., Sundholm D. J. Org. Chem. 2012, 77, 3408-3414. https://doi.org/10.1021/jo300182b
Klenitsky D.V., Gladkov L.L., Vershilovskaya I.V., Petrova D.V., Semeikin A.S., Maes W., Kruk M.M. J. Appl. Spectrosc. 2022, 88, 1111-1118. https://doi.org/10.1007/s10812-022-01287-8
Gladkov L.L., Klenitsky D.V., Vershilovskaya I.V., Maes W., Kruk M.M. J. Appl. Spectrosc. 2022, 89, 426-432. https://doi.org/10.1007/s10812-022-01374-w
Baird N.C. J. Am. Chem. Soc. 1972, 94, 4941-4948. https://doi.org/10.1021/ja00769a025
Johnson A.W., Kay I.T. J. Chem. Soc. 1965, 306, 1620-1629. https://doi.org/10.1039/jr9650001620
Grigg R., Hamilton R. J., Jozefowicz M.L., Rochester C.H., Terrell R.J., Wickwar H. J. Chem. Soc., Perkin Trans. II 1973, 86, 407-413. https://doi.org/10.1039/p29730000407
Stefanelli M., Pomarico G., Tortora L., Nardis S., Fronczek F.R., McCandless G.T., Smith K.M., Manowong M., Fang Y., Chen P., Kadish K.M., Rosa A., Ricciardi G., Paolesse R. Inorg. Chem. 2012, 51, 6928-6942. https://doi.org/10.1021/ic3007926
Ziegler C.J., Sabin J.R., Geier III R., Nemykin V.N. Chem. Commun. 2012, 48, 4743-4745. https://doi.org/10.1039/c2cc31146a
Lemon C.M., Halbach R.L., Huynh M., Nocera D.G. Inorg. Chem. 2015, 54, 2713-2725. https://doi.org/10.1021/ic502860g
Kruk M.M. Ngo T.H., Verstappen P., Starukhin A.S., Hofkens J., Dehaen W., Maes W. J. Phys. Chem. A 2012, 116, 10695-10703. https://doi.org/10.1021/jp305326x
Ivanova Yu.B., Savva V.A., Mamardashvili N.Zh., Starukhin A.S., Ngo T.H., Dehaen W., Maes W., Kruk M.M. J. Phys. Chem. A 2012, 116, 10683-10694. https://doi.org/10.1021/jp305325e
Ding T., Aleman E.A., Modarelli D.A., Ziegler C.J. J. Phys. Chem., A 2005, 109, 7411-7417. https://doi.org/10.1021/jp052047i
Ding T., Harvey J.D., Ziegler C.J. J. Porphyrins Phthalo-cyanines 2005, 9, 22-27. https://doi.org/10.1142/S1088424605000058
Gouterman M. Optical Spectra and Electronic Structure of Porphyrins and Related Ring. In: The Porphyrins (Dolphin D., Ed.), New York: Acad. Press, 1978, 3, 1-165. https://doi.org/10.1016/B978-0-12-220103-5.50008-8
Ajeeb Y.H., Klenitsky D.V., Vershilovskaya I.V., Petrova D.V., Semeikin A.S., Maes W., Gladkov L.L., Kruk M.M. J. Appl. Spectrosc. 2020, 87, 421-428. https://doi.org/10.1007/s10812-020-01017-y
Ghosh A., Junge K. Chem. Eur. J. 1997, 3, 823-833. https://doi.org/10.1002/chem.19970030523
Ghosh A., Wondimagegn T., Parusel A.B. J. Am. Chem. Soc. 2000, 122, 5100-5104. https://doi.org/10.1021/ja9943243
Costa R., Richard G. Geier III, Ziegler C.J. Dalton Trans. 2011, 40, 4384-4386. https://doi.org/10.1039/c1dt10112a
Mohammad A., Weaver J.S., Gray H.B., Abdelas M., Gross Z. Tetrahedron Lett. 2003, 44, 2077-2079. https://doi.org/10.1016/S0040-4039(03)00174-6
Ajeeb Y.H., Minchenya A.A., Klimovich P.G., Maes W., Kruk M.M. J. Appl. Spectrosc. 2019, 86, 788-794. https://doi.org/10.1007/s10812-019-00894-2
Shen J., Ou Z., Shao J., Galezowski M., Gryko D.T., Kadish K.M. J. Porphyrins Phthalocyanines 2007, 11, 269-276. https://doi.org/10.1142/S1088424607000321
Shakel A.Yu., Sokhibova A.M., Petrova D.V., Kruk M.M. J. Appl. Spectrosc. 2024, 91, 177-183. https://doi.org/10.1007/s10812-024-01715-x
Kruk M.M. J. Appl. Spectrosc. 2022, 89, 624-630. https://doi.org/10.1007/s10812-022-01402-9
Nappa M., Valentine J.S. J. Am. Chem. Soc. 1978, 100, 5075-5080. https://doi.org/10.1021/ja00484a027
Lakowicz J.R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1983, 496 p. https://doi.org/10.1007/978-1-4615-7658-7
Takeda J., Sato M. Chem. Lett. 1995, 11, 971-972. https://doi.org/10.1246/cl.1995.971
Knyukshto V.N., Gladkov L.L., Maes W., Kruk M.M. J. Appl. Spectrosc. 2023, 90, 507-514. https://doi.org/10.1007/s10812-023-01560-4
Röder B., Büchner M., Rückmann I., Senge M.O. Photochem. Photobiol. Sci. 2010, 9, 1152-1158. https://doi.org/10.1039/c0pp00107d
Senge M.O., Highly Substituted Porphyrins. In: The Porphyrin Handbook, Vol. 1 (Kadish K.M., Smith K.M., Guillard R., Eds.), San Diego: World Scientific, 2000, 239-347.
Shelnutt J.A., Song X., Ma J., Jia S., Jentzen W., Medforth C.J. Chem. Soc. Rev. 1998, 27, 31-41. https://doi.org/10.1039/a827031z
Simkhovich L., Goldberg I., Gross Z. J. Inorg. Biochem. 2000, 80, 235-238. https://doi.org/10.1016/S0162-0134(00)00077-5
Ajeeb Y.H., Karlovich T.B., Gladkov L.L., Maes W., Kruk M.M. J. Appl. Spectrosc. 2019, 86, 389-395. https://doi.org/10.1007/s10812-019-00831-3
Knuykshto V.N., Ngo T.H., Dehaen W., Maes W., Kruk M.M. RSC Adv. 2016, 6, 43911-43915. https://doi.org/10.1039/C6RA06196F
Sinha W., Ravotto L., Ceroni P., Kar S. Dalton Trans. 2015, 44, 17767-17773. https://doi.org/10.1039/C5DT03041B
Tanabe M., Matsuoka H., Ohba Y., Yamauchi S., Sugisaki K., Toyota K., Sato K., Takui T., Goldberg I., Saltsman I., Gross Z. J. Phys. Chem. A. 2012, 116, 9662-9673. https://doi.org/10.1021/jp3071037
Vestfrid J., Botoshansky M., Palmer J.H., Durrell A.C., H.B. Gray H.B., Gross Z. J. Am. Chem. Soc. 2011, 133, 12899-12901. https://doi.org/10.1021/ja202692b
Rabinovich E., Goldberg I., Gross Z. Chem. Eur. J. 2011, 17, 12294-12301. https://doi.org/10.1002/chem.201102348
Senge M.O., MacGovan S.A., O'Brien J. Chem. Commun. 2015, 51, 17031-17063. https://doi.org/10.1039/C5CC06254C
Mc Glynn S.P., Azumi T., Kinoshita M. Molecular Spectroscopy of the Triplet States, New Jersey: Prentice-Hall, Inc., 1969, 448 p.
Vershilovskaya I.V., Stefani S., Verstappen P., Ngo T.H., Scheblykin I.G., Dehaen W., Maes W., Kruk M.M. Macroheterocycles 2017, 10, 257-267. https://doi.org/10.6060/mhc160962n
Maes W., Ngo T.H., Vanderhaeghen J., Dehaen W. Org. Lett. 2007, 9, 3165−3168. https://doi.org/10.1021/ol071226a
Ventura B., Esposti A.D., Kozharna B., Gryko D.T., Flamigni L. New. J. Chem. 2005, 29, 1559-1566. https://doi.org/10.1039/b507979a
Nastasi F., Campagna S., Ngo T., Dehaen W., Maes W., Kruk M. Photochem. Photobiol. Sci. 2011, 10, 143-150. https://doi.org/10.1039/c0pp00282h
Kruk M.M. Proc. BSTU, Ser. 3, Physics and Mathematics. Informatics 2023, Is. (1), 29 - 33. https://doi.org/10.52065/2520-6141-2023-266-1-6
Paolesse R., Marini A, Nardis S., Froiio A., Mandoj F., Nurco D.J., Prodi L., Montalti M., Smith K.M. J. Porphyrins Phtha-locyanines 2003, 7, 25-36. https://doi.org/10.1142/S1088424603000057
Kruk M.M., Klenitsky D.V., Gladkov L.L., Maes W. J. Porphyrins Phthalocyanines 2020, 24, 765-774. https://doi.org/10.1142/S1088424619501797
Ngo T.H., Puntoriero F., Nastasi F., Robeyns K., Van Meervelt L., Campagna S., Dehaen W., Maes W. Chem. Eur. J. 2010, 16, 5691-5705. https://doi.org/10.1002/chem.201000008
Paolesse R., Sagone F., Macagnano A., Boschi T., Prodi L., Montalti M., Zacceroni N., Boletta F., Smith K.M. J. Porphyrins Phthalocyanines 1999, 3, 364-370. https://doi.org/10.1002/(SICI)1099-1409(199906)3:5<364::AID-JPP141>3.0.CO;2-4
Canard G., Gao Di, D'Aleo A., Giorgi M., Dang F.-X., Balaban T.S. Chem. Eur. J. 2015, 21, 7760-7771. https://doi.org/10.1002/chem.201406369
Murov S.L., Carmichael I., Hug G.L. Handbook of Photo-chemistry, 2-nd ed., New York: Marcel Dekker 1993, 420 p.
Solovyov K.N., Borisevich E.A. Usp. Fiz. Nauk. 2005, 175, 247-270. https://doi.org/10.3367/UFNr.0175.200503b.0247
Azenha E.G., Serra A.C., Pineiro M., Pineira M.M., Seixas de Melo J., Arnaut L.G., Fromosinho S.J., Rocha Gonsalves A.M.d'A. Chem. Phys. 2002, 280, 177-190. https://doi.org/10.1016/S0301-0104(02)00485-8
Shakel A.Yu., Sokhibova A.M., Petrova D.V., Semeikin A.S., Kruk M.M. Proc. BSTU, Ser. 3, Physics and Mathematics. Informatics 2022, Is. (2), 36-42. https://doi.org/10.52065/2520-6141-2022-260-2-36-42
Soll M., Sudhakar K., Fridman N., Müller A., Röder B., Gross Z. Org. Lett. 2016, 18, 5840-5843. https://doi.org/10.1021/acs.orglett.6b02877
Ooi S., Yoneda T., Tanaka T., Osuka A. Chem. Eur. J. 2015, 21, 7772-7779. https://doi.org/10.1002/chem.201500894
Ueta K., Tanaka T., Osuka A. Chem. Lett. 2018, 47, 916-919. https://doi.org/10.1246/cl.180309
Ooi Sh., Tanaka T., Osuka A. Eur. J. Org. Chem. 2015, 130-134. https://doi.org/10.1002/ejoc.201403217
Ueta K., Tanaka T., Osuka A. Molecules 2019, 642. https://doi.org/10.3390/molecules24030642
Ngo T.H., Nastasi F., Puntoriero F., Campagna S., Dehaen W, Maes W. J. Org. Chem. 2010, 75, 2127-2130. https://doi.org/10.1021/jo902709c
Vestfrid J., Goldberg I., Gross Z. Inorg. Chem. 2014, 53, 10536-10542. https://doi.org/10.1021/ic501585a
Karimov D.R., Barannikov V.P., Mal'tseva O.V., Kumeev R.S., Berezin D.B. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. [ChemChemTech] 2011, 54(4), 26-33.
Sagun E.I. Khim. Fiz. 1990, 9, 764-771.
Bonnett R. Chemical Aspects of Photodynamic Therapy, Amsterdam: Gordon and Breach Science Publishers, 2000, 305 p. https://doi.org/10.1201/9781482296952
Teo R.D., Hwang J.Y., Termini J., Gross Z., Gray H.B. Chem. Rev. 2017, 117, 2711-2729. https://doi.org/10.1021/acs.chemrev.6b00400
Kruk M.M. Structure and Optical Properties of Tetrapyrrolic Compounds. Мinsk: BSTU Publ., 2019, 216 p. [Крук Н.Н. Строение и оптические свойства тетрапиррольных соединений. Минск: БГТУ, 2019. 216 с.], https://elib.belstu.by/handle/123456789/36702.