Спектрально-люминесцентные и фотофизические свойства свободных оснований корролов

  • Mikalai M. Kruk Белорусский государcтвенный технологический университет
  • Dmitry V. Klenitsky Белорусская государственная академия связи
  • Lev L. Gladkov Белорусская государственная академия связи

Аннотация

Corroles are the brightest representatives of the contracted tetrapyrrolic macrocycles whose electronic structure, spectral-luminescent and photophysical properties are quite different from those of porphyrins. To date the number of reviews has appeared dealing with the synthesis and applications studies, but much less attention has been paid to the results of the fundamental studies on the electronic structure, aromaticity and photophysics of these compounds. This review aims to summarize the peculiarities of the spectral-luminescent and photophysical properties of the free base corroles unraveled in last twenty years.

Литература

Paolesse R., Synthesis of Corroles. In: The Porphyrin Handbook, Vol. 2 (Kadish K.M., Smith K.M., Guillard R., Eds.), San Diego: World Scientific, 2000, 201-232.

Berezin D.B., Karimov D.R., Kustov A.V., Corroles and Their Derivatives: Synthesis, Properties, Prospects of Prac-tical Applications, Moscow: LENAND, 2018, 304 p. [Березин Д.Б., Каримов Д.Р., Кустов А.В. Корролы и их произ-водные: Синтез, свойства, перспективы практического применения, URSS. 2018. 304 с. ISBN 978-5-9710-5293-7].

Kruk M.M., Klenitsky D.V., Maes W. Macroheterocycles 2019, 12, 58-67. https://doi.org/10.6060/mhc190229k

Capar J., Conradie J., Beavers C.M., Ghosh A. J. Phys. Chem. A. 2015, 119, 3452-3457. https://doi.org/10.1021/jp511188c

Kruk M.M., Ngo T.H., Savva V.A., Starukhin A.S., Dehaen W., Maes W. J. Phys. Chem. A. 2012, 116, 10704-10711. https://doi.org/10.1021/jp305327c

Beenken W.J.D., Presselt M., Ngo T.H., Dehaen W., Maes W., Kruk M.M. J. Phys. Chem. A. 2014, 118, 862-871. https://doi.org/10.1021/jp411033h

Fliegl H., Sundholm D. J. Org. Chem. 2012, 77, 3408-3414. https://doi.org/10.1021/jo300182b

Klenitsky D.V., Gladkov L.L., Vershilovskaya I.V., Petrova D.V., Semeikin A.S., Maes W., Kruk M.M. J. Appl. Spectrosc. 2022, 88, 1111-1118. https://doi.org/10.1007/s10812-022-01287-8

Gladkov L.L., Klenitsky D.V., Vershilovskaya I.V., Maes W., Kruk M.M. J. Appl. Spectrosc. 2022, 89, 426-432. https://doi.org/10.1007/s10812-022-01374-w

Baird N.C. J. Am. Chem. Soc. 1972, 94, 4941-4948. https://doi.org/10.1021/ja00769a025

Johnson A.W., Kay I.T. J. Chem. Soc. 1965, 306, 1620-1629. https://doi.org/10.1039/jr9650001620

Grigg R., Hamilton R. J., Jozefowicz M.L., Rochester C.H., Terrell R.J., Wickwar H. J. Chem. Soc., Perkin Trans. II 1973, 86, 407-413. https://doi.org/10.1039/p29730000407

Stefanelli M., Pomarico G., Tortora L., Nardis S., Fronczek F.R., McCandless G.T., Smith K.M., Manowong M., Fang Y., Chen P., Kadish K.M., Rosa A., Ricciardi G., Paolesse R. Inorg. Chem. 2012, 51, 6928-6942. https://doi.org/10.1021/ic3007926

Ziegler C.J., Sabin J.R., Geier III R., Nemykin V.N. Chem. Commun. 2012, 48, 4743-4745. https://doi.org/10.1039/c2cc31146a

Lemon C.M., Halbach R.L., Huynh M., Nocera D.G. Inorg. Chem. 2015, 54, 2713-2725. https://doi.org/10.1021/ic502860g

Kruk M.M. Ngo T.H., Verstappen P., Starukhin A.S., Hofkens J., Dehaen W., Maes W. J. Phys. Chem. A 2012, 116, 10695-10703. https://doi.org/10.1021/jp305326x

Ivanova Yu.B., Savva V.A., Mamardashvili N.Zh., Starukhin A.S., Ngo T.H., Dehaen W., Maes W., Kruk M.M. J. Phys. Chem. A 2012, 116, 10683-10694. https://doi.org/10.1021/jp305325e

Ding T., Aleman E.A., Modarelli D.A., Ziegler C.J. J. Phys. Chem., A 2005, 109, 7411-7417. https://doi.org/10.1021/jp052047i

Ding T., Harvey J.D., Ziegler C.J. J. Porphyrins Phthalo-cyanines 2005, 9, 22-27. https://doi.org/10.1142/S1088424605000058

Gouterman M. Optical Spectra and Electronic Structure of Porphyrins and Related Ring. In: The Porphyrins (Dolphin D., Ed.), New York: Acad. Press, 1978, 3, 1-165. https://doi.org/10.1016/B978-0-12-220103-5.50008-8

Ajeeb Y.H., Klenitsky D.V., Vershilovskaya I.V., Petrova D.V., Semeikin A.S., Maes W., Gladkov L.L., Kruk M.M. J. Appl. Spectrosc. 2020, 87, 421-428. https://doi.org/10.1007/s10812-020-01017-y

Ghosh A., Junge K. Chem. Eur. J. 1997, 3, 823-833. https://doi.org/10.1002/chem.19970030523

Ghosh A., Wondimagegn T., Parusel A.B. J. Am. Chem. Soc. 2000, 122, 5100-5104. https://doi.org/10.1021/ja9943243

Costa R., Richard G. Geier III, Ziegler C.J. Dalton Trans. 2011, 40, 4384-4386. https://doi.org/10.1039/c1dt10112a

Mohammad A., Weaver J.S., Gray H.B., Abdelas M., Gross Z. Tetrahedron Lett. 2003, 44, 2077-2079. https://doi.org/10.1016/S0040-4039(03)00174-6

Ajeeb Y.H., Minchenya A.A., Klimovich P.G., Maes W., Kruk M.M. J. Appl. Spectrosc. 2019, 86, 788-794. https://doi.org/10.1007/s10812-019-00894-2

Shen J., Ou Z., Shao J., Galezowski M., Gryko D.T., Kadish K.M. J. Porphyrins Phthalocyanines 2007, 11, 269-276. https://doi.org/10.1142/S1088424607000321

Shakel A.Yu., Sokhibova A.M., Petrova D.V., Kruk M.M. J. Appl. Spectrosc. 2024, 91, 177-183. https://doi.org/10.1007/s10812-024-01715-x

Kruk M.M. J. Appl. Spectrosc. 2022, 89, 624-630. https://doi.org/10.1007/s10812-022-01402-9

Nappa M., Valentine J.S. J. Am. Chem. Soc. 1978, 100, 5075-5080. https://doi.org/10.1021/ja00484a027

Lakowicz J.R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1983, 496 p. https://doi.org/10.1007/978-1-4615-7658-7

Takeda J., Sato M. Chem. Lett. 1995, 11, 971-972. https://doi.org/10.1246/cl.1995.971

Knyukshto V.N., Gladkov L.L., Maes W., Kruk M.M. J. Appl. Spectrosc. 2023, 90, 507-514. https://doi.org/10.1007/s10812-023-01560-4

Röder B., Büchner M., Rückmann I., Senge M.O. Photochem. Photobiol. Sci. 2010, 9, 1152-1158. https://doi.org/10.1039/c0pp00107d

Senge M.O., Highly Substituted Porphyrins. In: The Porphyrin Handbook, Vol. 1 (Kadish K.M., Smith K.M., Guillard R., Eds.), San Diego: World Scientific, 2000, 239-347.

Shelnutt J.A., Song X., Ma J., Jia S., Jentzen W., Medforth C.J. Chem. Soc. Rev. 1998, 27, 31-41. https://doi.org/10.1039/a827031z

Simkhovich L., Goldberg I., Gross Z. J. Inorg. Biochem. 2000, 80, 235-238. https://doi.org/10.1016/S0162-0134(00)00077-5

Ajeeb Y.H., Karlovich T.B., Gladkov L.L., Maes W., Kruk M.M. J. Appl. Spectrosc. 2019, 86, 389-395. https://doi.org/10.1007/s10812-019-00831-3

Knuykshto V.N., Ngo T.H., Dehaen W., Maes W., Kruk M.M. RSC Adv. 2016, 6, 43911-43915. https://doi.org/10.1039/C6RA06196F

Sinha W., Ravotto L., Ceroni P., Kar S. Dalton Trans. 2015, 44, 17767-17773. https://doi.org/10.1039/C5DT03041B

Tanabe M., Matsuoka H., Ohba Y., Yamauchi S., Sugisaki K., Toyota K., Sato K., Takui T., Goldberg I., Saltsman I., Gross Z. J. Phys. Chem. A. 2012, 116, 9662-9673. https://doi.org/10.1021/jp3071037

Vestfrid J., Botoshansky M., Palmer J.H., Durrell A.C., H.B. Gray H.B., Gross Z. J. Am. Chem. Soc. 2011, 133, 12899-12901. https://doi.org/10.1021/ja202692b

Rabinovich E., Goldberg I., Gross Z. Chem. Eur. J. 2011, 17, 12294-12301. https://doi.org/10.1002/chem.201102348

Senge M.O., MacGovan S.A., O'Brien J. Chem. Commun. 2015, 51, 17031-17063. https://doi.org/10.1039/C5CC06254C

Mc Glynn S.P., Azumi T., Kinoshita M. Molecular Spectroscopy of the Triplet States, New Jersey: Prentice-Hall, Inc., 1969, 448 p.

Vershilovskaya I.V., Stefani S., Verstappen P., Ngo T.H., Scheblykin I.G., Dehaen W., Maes W., Kruk M.M. Macroheterocycles 2017, 10, 257-267. https://doi.org/10.6060/mhc160962n

Maes W., Ngo T.H., Vanderhaeghen J., Dehaen W. Org. Lett. 2007, 9, 3165−3168. https://doi.org/10.1021/ol071226a

Ventura B., Esposti A.D., Kozharna B., Gryko D.T., Flamigni L. New. J. Chem. 2005, 29, 1559-1566. https://doi.org/10.1039/b507979a

Nastasi F., Campagna S., Ngo T., Dehaen W., Maes W., Kruk M. Photochem. Photobiol. Sci. 2011, 10, 143-150. https://doi.org/10.1039/c0pp00282h

Kruk M.M. Proc. BSTU, Ser. 3, Physics and Mathematics. Informatics 2023, Is. (1), 29 - 33. https://doi.org/10.52065/2520-6141-2023-266-1-6

Paolesse R., Marini A, Nardis S., Froiio A., Mandoj F., Nurco D.J., Prodi L., Montalti M., Smith K.M. J. Porphyrins Phtha-locyanines 2003, 7, 25-36. https://doi.org/10.1142/S1088424603000057

Kruk M.M., Klenitsky D.V., Gladkov L.L., Maes W. J. Porphyrins Phthalocyanines 2020, 24, 765-774. https://doi.org/10.1142/S1088424619501797

Ngo T.H., Puntoriero F., Nastasi F., Robeyns K., Van Meervelt L., Campagna S., Dehaen W., Maes W. Chem. Eur. J. 2010, 16, 5691-5705. https://doi.org/10.1002/chem.201000008

Paolesse R., Sagone F., Macagnano A., Boschi T., Prodi L., Montalti M., Zacceroni N., Boletta F., Smith K.M. J. Porphyrins Phthalocyanines 1999, 3, 364-370. https://doi.org/10.1002/(SICI)1099-1409(199906)3:5<364::AID-JPP141>3.0.CO;2-4

Canard G., Gao Di, D'Aleo A., Giorgi M., Dang F.-X., Balaban T.S. Chem. Eur. J. 2015, 21, 7760-7771. https://doi.org/10.1002/chem.201406369

Murov S.L., Carmichael I., Hug G.L. Handbook of Photo-chemistry, 2-nd ed., New York: Marcel Dekker 1993, 420 p.

Solovyov K.N., Borisevich E.A. Usp. Fiz. Nauk. 2005, 175, 247-270. https://doi.org/10.3367/UFNr.0175.200503b.0247

Azenha E.G., Serra A.C., Pineiro M., Pineira M.M., Seixas de Melo J., Arnaut L.G., Fromosinho S.J., Rocha Gonsalves A.M.d'A. Chem. Phys. 2002, 280, 177-190. https://doi.org/10.1016/S0301-0104(02)00485-8

Shakel A.Yu., Sokhibova A.M., Petrova D.V., Semeikin A.S., Kruk M.M. Proc. BSTU, Ser. 3, Physics and Mathematics. Informatics 2022, Is. (2), 36-42. https://doi.org/10.52065/2520-6141-2022-260-2-36-42

Soll M., Sudhakar K., Fridman N., Müller A., Röder B., Gross Z. Org. Lett. 2016, 18, 5840-5843. https://doi.org/10.1021/acs.orglett.6b02877

Ooi S., Yoneda T., Tanaka T., Osuka A. Chem. Eur. J. 2015, 21, 7772-7779. https://doi.org/10.1002/chem.201500894

Ueta K., Tanaka T., Osuka A. Chem. Lett. 2018, 47, 916-919. https://doi.org/10.1246/cl.180309

Ooi Sh., Tanaka T., Osuka A. Eur. J. Org. Chem. 2015, 130-134. https://doi.org/10.1002/ejoc.201403217

Ueta K., Tanaka T., Osuka A. Molecules 2019, 642. https://doi.org/10.3390/molecules24030642

Ngo T.H., Nastasi F., Puntoriero F., Campagna S., Dehaen W, Maes W. J. Org. Chem. 2010, 75, 2127-2130. https://doi.org/10.1021/jo902709c

Vestfrid J., Goldberg I., Gross Z. Inorg. Chem. 2014, 53, 10536-10542. https://doi.org/10.1021/ic501585a

Karimov D.R., Barannikov V.P., Mal'tseva O.V., Kumeev R.S., Berezin D.B. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. [ChemChemTech] 2011, 54(4), 26-33.

Sagun E.I. Khim. Fiz. 1990, 9, 764-771.

Bonnett R. Chemical Aspects of Photodynamic Therapy, Amsterdam: Gordon and Breach Science Publishers, 2000, 305 p. https://doi.org/10.1201/9781482296952

Teo R.D., Hwang J.Y., Termini J., Gross Z., Gray H.B. Chem. Rev. 2017, 117, 2711-2729. https://doi.org/10.1021/acs.chemrev.6b00400

Kruk M.M. Structure and Optical Properties of Tetrapyrrolic Compounds. Мinsk: BSTU Publ., 2019, 216 p. [Крук Н.Н. Строение и оптические свойства тетрапиррольных соединений. Минск: БГТУ, 2019. 216 с.], https://elib.belstu.by/handle/123456789/36702.

Опубликован
2024-06-21
Как цитировать
Kruk, M., Klenitsky, D., & Gladkov, L. (2024). Спектрально-люминесцентные и фотофизические свойства свободных оснований корролов. Макрогетероциклы/Macroheterocycles, 17(2), 102-115. https://doi.org/10.6060/mhc245844k