Оптические свойства комплексов на основе металлфталоцианинов и бескислородного графена

  • Inna V. Klimenko
  • Elena A. Trusova
  • Anton V. Lobanov
Ключевые слова: фталоцианин цинка, фталоцианин алюминия, бескислородный графен, гибридные структуры, агрегация, оптическое поглощение.

Аннотация

Две гибридные системы на основе бескислородного графена и AlCl- и Zn-фталоцианинов были синтезированы в водно-органической среде и изучены методом оптического поглощения. N,N-диметилформамид использовали в качестве органического растворителя. Было показано, что присутствие в системах бескислородного графена препятствует агрегации фталоцианинов в водной среде и способствует их стабилизации в мономерной форме. Была оценены стабильность полученных гибридных комплексов, а также связывающая способность компонентов систем. Предложены механизмы взаимодействия фталоцианов и бескислородного графена в водно-органической среде.

Литература

Plekhova N., Shevchenko O., Korshunova O. et al. Bioengineering (Basel) 2022; 9, 82. https://doi.org/10.3390/bioengineering9020082

Abrahamse H., Hamblin M.R. Biochem. J. 2016, 473, 347-364. https://doi.org/10.1042/BJ20150942

Nyman E.S., Hynninen P.H. J. Photochem. Photobiol. B: Biology 2004, 73, 1-28. https://doi.org/10.1016/j.jphotobiol.2003.10.002

Rosenthal I. Photochem. Photobiol. 1991, 53, 859-870. https://doi.org/10.1111/j.1751-1097.1991.tb09900.x

Klimenko I.V., Lobanov A.V. J. Biomed. Photon. Eng. 2016, 2, 040310. https://doi.org/10.18287/JBPE16.02.040310

Bonneau S., Vever-Bizet C. Expert Opin. Ther. Patents 2008, 18, 1-15. https://doi.org/10.1517/13543776.18.9.1011

Martinez De Pinillos Bayona A., Mroz P., Thunshelle C., Hamblin M.R. Chem. Biol. Drug Des. 2017, 89, 192-206. https://doi.org/10.1111/cbdd.12792

Basova T.V., Belykh D.V., Vashurin A.S. et al. J. Structural Chem. 2023, 64, 766-852. https://doi.org/10.1134/S0022476623050037

Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. Macroheterocycles 2020, 13, 311-456.

https://doi.org/10.6060/mhc200814k

Staicu A., Pascu A., Nuta A., et al. Rom. Rep. Phys. 2013, 65, 1032-1051. https://rrp.nipne.ro/2013_65_3/A38.pdf

Bonnett R. Chemical Aspects of Photodynamic Therapy. Gordon and Breach Science, Canada, 2000. 324 p. https://doi.org/10.1201/9781482296952

Madkour L.H. The Roles and Mechanisms of ROS, Oxidative Stress, and Oxidative Damage. In: Retracted Book. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses. Nanomedicine and Nanotoxicology (Madkour L.H., Ed.), Springer, Cham., 2020, p. 139-192. https://doi.org/10.1007/978-3-030-37297-2_4

Berezin D.B., Makarov V.V., Znoyko S.A. et al. Mendeleev Commun. 2020, 30, 5, 621-623. https://doi.org/10.1016/j.mencom.2020.09.023

Zhang J., Jiang C., Longo J.P.F. et al. Acta Pharm. Sin. B 2018; 8, 137-146. https://doi.org/10.1016/j.apsb.2017.09.003

Klimenko I.V., Astakhova T.Yu., Timokhina E.N., Lobanov A.V. J. Biomed. Photon. Eng. 2023, 9, 030301-1. https://doi.org/10.18287/JBPE23.09.030301

Ohno O., Kaizu Y., Kobayashi H. J. Chem. Phys. 1993, 99, 4128-4139. https://doi.org/10.1063/1.466109

Gradova M.A., Gradov O.V., Lobanov A.V., et al. J. Porphyrins Phthalocyanines 2022, 26, 708-718. https://doi.org/10.1142/S1088424622500626

Jayme C.C., Calori I.R., Cunha E.M.F., Tedesco A.C. Spectrochim. Acta A 2018, 201, 242-248. https://doi.org/10.1016/j.saa.2018.05.009

Lebedeva N.S., Petrova O.V., Vyugin A.I. et al. Thermochim. Acta 2004, 417, 127-132. https://doi.org/10.1016/j.tca.2004.01.023

Tsubone T.M., Braga G., Vilsinski B.H., et al. J. Braz. Chem. Soc. 2014, 25, 890-897. https://doi.org/10.5935/0103-5053.20140058

Braun A., Tcherniac J. Ber. Dtsch. Chem. Ges. 1907, 40, 2709. https://doi.org/10.1002/cber.190704002202

Zvyagina A. I. Colloid J. 2022, 84, 633-641. https://doi.org/10.1134/S1061933X22700090

Ali H.E.A., Piskin M., Altun S., et al. J. Lumin. 2016, 173, 113-119. https://doi.org/10.1016/j.jlumin.2015.12.010

de la Torre G., Nicolau M., Torres T. Phthalocyanines: Synthesis, Supramolecular Organization, and Physical Properties. In: Supramolecular Photosensitive and Electroactive Materials; Elsevier: Amsterdam, Netherlands, 2001. p. 1-111. https://doi.org/10.1016/B978-012513904-5/50003-X

Claessens C. G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97. https://doi.org/10.1002/tcr.20139

Cong F., Ning B., Ji Y. et al. Dyes Pigm. 2008, 77, 686-690. https://doi.org/10.1016/j.dyepig.2007.07.010

Medyouni R., Hallouma B., Mansour L. et al. J. Chem. Res. 2017, 41, 291-295. https://doi.org/10.3184/174751917X14931195075571

Klimenko I.V., Trusova E.A., Shchegolikhin A.N., Lobanov A.V., Jurina L.V. Fuller. Nanotub. Carb. Nanostruct. 2022, 30, 1, 33-39, https://doi.org/10.1080/1536383X.2021.1976754

Dąbrowski J.M., Arnaut L.G. Photochem. Photobiol. Sci. 2015, 14, 1-14. https://doi.org/10.1039/c5pp00132c

Palewska K., Sworakowski J., Lipiński J. Opt. Mater. 2012, 34, 1717-1724. https://doi.org/10.1016/j.optmat.2012.02.009

Swart G., Fourie-Müller E., Swarts J. Molecules 2022, 27, 1529. https://doi.org/10.3390/molecules27051529

Nyokong T. Coord. Chem. Rev. 2007, 251, 1707-1722. https://doi.org/10.1016/j.ccr.2006.11.011

Janczak J. ACS Omega 2019, 4, 3673−3683. https://doi.org/10.1021/acsomega.8b03055

Moon H.K., Son M., Park J.E. et al. NPG Asia Materials 2012, 4, e12. https://doi.org/10.1038/am.2012.22

Carneiro Z.A., de Moraes J.C., Rodrigues F.P., et al. J. Inorg. Biochem. 2011, 105, 1035-1043. https://doi.org/10.1016/j.jinorgbio.2011.04.011

Primo F., Rodrigues M.M.A., Simioni A.R., et al. J. Magn. Magn. Mater. 2008, 320, e211-e214. https://doi.org/10.1016/j.jmmm.2008.02.050

Rak J., Pouckova P., Benes J., Vetvicka D. Anticancer Res. 2019, 39, 3323-3339. https://doi.org/10.21873/anticanres.13475

Koifman O.I., Hanack M., Syrbu S.A., Lyubimtsev A.V. Russ. Chem. Bull., Int. Ed. 2013, 62, 896-917. https://doi.org/10.1007/s11172-013-0121-2

Gradova M.A,. Ostashevskaya I.I., Gradov O.V., et al. Macroheterocycles 2018, 11, 404-411. https://doi.org/10.6060/mhc181001g

Silva E.P.O., Santos E.D., Gonçalves C.S., et al. Laser Phys. 2016, 26, 105601. https://doi.org/10.1088/1054-660X/26/10/105601

Güzel E., AtsayA., Nalbantoglu S., et al. Dyes Pigm. 2013, 97, 238-243. https://doi.org/10.1016/j.dyepig.2012.12.027

Klimenko I.V., Lobanov A.V. Russ. J. Phys. Chem. B 2018, 12, 10-16. https://doi.org/10.1134/S1990793118010074

Klimenko I.V., Lobanov A.V. Macroheterocycles 2020, 13, 142-146.

https://doi.org/10.6060/mhc200390k

Klimenko I.V., Lobanov A.V., Trusova E.A. Russ. J. Phys. Chem. B 2019, 13, 964-968. https://doi.org/10.1134/S1990793119060204

Smith C.B., Days L.C., Alajroush D.R., et al. Photochem. Photobiol. 2022, 98, 17-41. https://doi.org/10.1111/php.13467

Moghassemi S., Dadashzadeh A., Narcizo de Souza P.E., et al. Photodiagn. Photodyn Ther. 2021, 6, 102555. https://doi.org/10.1016/j.pdpdt.2021.102555

Gholizadeh M., Doustvandi M.A., Mohammadnejad F. Molecules 2021, 26, 6877. https://doi.org/10.3390/molecules26226877

Kuzyniak W., Schmidt J., Glac W., et al. Int. J. Oncol. 2017, 50, 953-963. https://doi.org/10.3892/ijo.2017.3854

Huang K., Zhang H., Yan M., et al. Dyes Pigm. 2022, 198, 109997. https://doi.org/10.1016/j.dyepig.2021.109997

Velazquez F.N., Miretti M., Baumgartner M.T., et al. Sci. Rep. 2019, 9, 3010. https://doi.org/10.1038/s41598-019-39390-0

de Araújo Silva D.N., Silva N.T.D., Sena I.A.A. Photodiagn. Photodyn. Ther. 2020, 31, 101843 (1-6). https://doi.org/10.1016/j.pdpdt.2020.101843

de Moraes M., Vasconcelos R.C., Figueiró J.P., et al. Photodiagn. Photodyn. Ther. 2015, 12, 592-597. https://doi.org/10.1016/j.pdpdt.2015.10.009

Gouterman M. In: The Porphyrins. Vol. III. Physical Chemistry, Part A (Dolphin D. Ed.), New York: Academic Press, 1978. pp. 1-165.

Ogunsipe A. FUW Trends in Science & Technology J. 2018, 3(2B), 669-681. https://www.ftstjournal.com/Digital%20Library/32B%20Article%201.php

Snow A.W. Phthalocyanine Aggregation. In: The Porphyrin Handbook, Vol. 17 (Kadish K.M., Smith K.M., Guilard R., Eds.), San Diego: Academic Press, 2003. p. 129-176. https://doi.org/10.1016/B978-0-08-092391-8.50009-1

Dhami S., Phillips D. J. Photochem. Photobiol. A 1996, 100, 77-84. https://doi.org/10.1016/S1010-6030(96)04438-3

The Porphyrin Handbook: Phthalocyanines: Properties and Materials (Kadish K.M., Smith K.M., Guilard R., Eds.), San Diego: Academic Press, 2003. 289 p.

Novotný M., Šebera J., Bensalah-Ledoux A., et al. J. Mater. Res. 2015, 31, 163-172. https://doi.org/10.1557/jmr.2015.379

Trusova E.A., Klimenko I.V., Afzal A.M., et al. New J. Chem. 2021, 45, 10448-10458. https://doi.org/10.1039/D1NJ01015H

Berger S.D., McKenzie D.R., Martin P.J. Philos. Mag. Lett. 1988, 57, 285-290. https://doi.org/10.1080/09500838808214715

Tarakanov P.A., Simakov A.O., Pushkarev V.E., et al. Dalton Trans. 2023, 52, 2124-2134. https://doi.org/10.1039/D2DT03371B

Benesi H.A., Hildebrand J.H. J. Am. Chem. Soc. 1949, 71, 2703-2707. https://doi.org/10.1021/ja01176a030

Wang R., Yu Zh. Acta Phys. - Chim. Sin. 2007, 23, 1353-1359. https://doi.org/10.1016/S1872-1508(07)60071-0

Berezin D.B., Kustov A.V., Krest'yaninov M.A., et. al. J. Mol. Liq. 2019, 283, 532-536. https://doi.org/10.1016/j.molliq.2019.03.091

Roy D., Chakraborty A., Ghosh R. RSC Adv. 2017, 7, 40563-40570. https://doi.org/10.1039/C7RA06687B

Опубликован
2024-06-21
Как цитировать
Klimenko, I., Trusova, E., & Lobanov, A. (2024). Оптические свойства комплексов на основе металлфталоцианинов и бескислородного графена. Макрогетероциклы/Macroheterocycles, 17(3), 224-230. https://doi.org/10.6060/mhc245851k