Optical Properties of Complexes Based on Metal Phthalocyanines and Oxygen-Free Graphene
Abstract
Two hybrid systems based on oxygen-free graphene and AlCl- and Zn-phthalocyanines have been synthesized in aqua-organic medium and comparatively studied by optical absorption method. N,N-dimethylformamide was used as an organic solvent. It has been shown that the presence of oxygen-free graphene in the systems prevents the aggregation of phthalocyanines in aqua medium and contributes to their stabilization in monomeric form. The stability of the resulting hybrid complexes as well as the binding capacity of the components of the systems has been evaluated. The mechanisms of phthalocyanines and oxygen-free graphene interaction in aqua-organic medium have been proposed.
References
Plekhova N., Shevchenko O., Korshunova O. et al. Bioengineering (Basel) 2022; 9, 82. https://doi.org/10.3390/bioengineering9020082
Abrahamse H., Hamblin M.R. Biochem. J. 2016, 473, 347-364. https://doi.org/10.1042/BJ20150942
Nyman E.S., Hynninen P.H. J. Photochem. Photobiol. B: Biology 2004, 73, 1-28. https://doi.org/10.1016/j.jphotobiol.2003.10.002
Rosenthal I. Photochem. Photobiol. 1991, 53, 859-870. https://doi.org/10.1111/j.1751-1097.1991.tb09900.x
Klimenko I.V., Lobanov A.V. J. Biomed. Photon. Eng. 2016, 2, 040310. https://doi.org/10.18287/JBPE16.02.040310
Bonneau S., Vever-Bizet C. Expert Opin. Ther. Patents 2008, 18, 1-15. https://doi.org/10.1517/13543776.18.9.1011
Martinez De Pinillos Bayona A., Mroz P., Thunshelle C., Hamblin M.R. Chem. Biol. Drug Des. 2017, 89, 192-206. https://doi.org/10.1111/cbdd.12792
Basova T.V., Belykh D.V., Vashurin A.S. et al. J. Structural Chem. 2023, 64, 766-852. https://doi.org/10.1134/S0022476623050037
Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. Macroheterocycles 2020, 13, 311-456.
https://doi.org/10.6060/mhc200814k
Staicu A., Pascu A., Nuta A., et al. Rom. Rep. Phys. 2013, 65, 1032-1051. https://rrp.nipne.ro/2013_65_3/A38.pdf
Bonnett R. Chemical Aspects of Photodynamic Therapy. Gordon and Breach Science, Canada, 2000. 324 p. https://doi.org/10.1201/9781482296952
Madkour L.H. The Roles and Mechanisms of ROS, Oxidative Stress, and Oxidative Damage. In: Retracted Book. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses. Nanomedicine and Nanotoxicology (Madkour L.H., Ed.), Springer, Cham., 2020, p. 139-192. https://doi.org/10.1007/978-3-030-37297-2_4
Berezin D.B., Makarov V.V., Znoyko S.A. et al. Mendeleev Commun. 2020, 30, 5, 621-623. https://doi.org/10.1016/j.mencom.2020.09.023
Zhang J., Jiang C., Longo J.P.F. et al. Acta Pharm. Sin. B 2018; 8, 137-146. https://doi.org/10.1016/j.apsb.2017.09.003
Klimenko I.V., Astakhova T.Yu., Timokhina E.N., Lobanov A.V. J. Biomed. Photon. Eng. 2023, 9, 030301-1. https://doi.org/10.18287/JBPE23.09.030301
Ohno O., Kaizu Y., Kobayashi H. J. Chem. Phys. 1993, 99, 4128-4139. https://doi.org/10.1063/1.466109
Gradova M.A., Gradov O.V., Lobanov A.V., et al. J. Porphyrins Phthalocyanines 2022, 26, 708-718. https://doi.org/10.1142/S1088424622500626
Jayme C.C., Calori I.R., Cunha E.M.F., Tedesco A.C. Spectrochim. Acta A 2018, 201, 242-248. https://doi.org/10.1016/j.saa.2018.05.009
Lebedeva N.S., Petrova O.V., Vyugin A.I. et al. Thermochim. Acta 2004, 417, 127-132. https://doi.org/10.1016/j.tca.2004.01.023
Tsubone T.M., Braga G., Vilsinski B.H., et al. J. Braz. Chem. Soc. 2014, 25, 890-897. https://doi.org/10.5935/0103-5053.20140058
Braun A., Tcherniac J. Ber. Dtsch. Chem. Ges. 1907, 40, 2709. https://doi.org/10.1002/cber.190704002202
Zvyagina A. I. Colloid J. 2022, 84, 633-641. https://doi.org/10.1134/S1061933X22700090
Ali H.E.A., Piskin M., Altun S., et al. J. Lumin. 2016, 173, 113-119. https://doi.org/10.1016/j.jlumin.2015.12.010
de la Torre G., Nicolau M., Torres T. Phthalocyanines: Synthesis, Supramolecular Organization, and Physical Properties. In: Supramolecular Photosensitive and Electroactive Materials; Elsevier: Amsterdam, Netherlands, 2001. p. 1-111. https://doi.org/10.1016/B978-012513904-5/50003-X
Claessens C. G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97. https://doi.org/10.1002/tcr.20139
Cong F., Ning B., Ji Y. et al. Dyes Pigm. 2008, 77, 686-690. https://doi.org/10.1016/j.dyepig.2007.07.010
Medyouni R., Hallouma B., Mansour L. et al. J. Chem. Res. 2017, 41, 291-295. https://doi.org/10.3184/174751917X14931195075571
Klimenko I.V., Trusova E.A., Shchegolikhin A.N., Lobanov A.V., Jurina L.V. Fuller. Nanotub. Carb. Nanostruct. 2022, 30, 1, 33-39, https://doi.org/10.1080/1536383X.2021.1976754
Dąbrowski J.M., Arnaut L.G. Photochem. Photobiol. Sci. 2015, 14, 1-14. https://doi.org/10.1039/c5pp00132c
Palewska K., Sworakowski J., Lipiński J. Opt. Mater. 2012, 34, 1717-1724. https://doi.org/10.1016/j.optmat.2012.02.009
Swart G., Fourie-Müller E., Swarts J. Molecules 2022, 27, 1529. https://doi.org/10.3390/molecules27051529
Nyokong T. Coord. Chem. Rev. 2007, 251, 1707-1722. https://doi.org/10.1016/j.ccr.2006.11.011
Janczak J. ACS Omega 2019, 4, 3673−3683. https://doi.org/10.1021/acsomega.8b03055
Moon H.K., Son M., Park J.E. et al. NPG Asia Materials 2012, 4, e12. https://doi.org/10.1038/am.2012.22
Carneiro Z.A., de Moraes J.C., Rodrigues F.P., et al. J. Inorg. Biochem. 2011, 105, 1035-1043. https://doi.org/10.1016/j.jinorgbio.2011.04.011
Primo F., Rodrigues M.M.A., Simioni A.R., et al. J. Magn. Magn. Mater. 2008, 320, e211-e214. https://doi.org/10.1016/j.jmmm.2008.02.050
Rak J., Pouckova P., Benes J., Vetvicka D. Anticancer Res. 2019, 39, 3323-3339. https://doi.org/10.21873/anticanres.13475
Koifman O.I., Hanack M., Syrbu S.A., Lyubimtsev A.V. Russ. Chem. Bull., Int. Ed. 2013, 62, 896-917. https://doi.org/10.1007/s11172-013-0121-2
Gradova M.A,. Ostashevskaya I.I., Gradov O.V., et al. Macroheterocycles 2018, 11, 404-411. https://doi.org/10.6060/mhc181001g
Silva E.P.O., Santos E.D., Gonçalves C.S., et al. Laser Phys. 2016, 26, 105601. https://doi.org/10.1088/1054-660X/26/10/105601
Güzel E., AtsayA., Nalbantoglu S., et al. Dyes Pigm. 2013, 97, 238-243. https://doi.org/10.1016/j.dyepig.2012.12.027
Klimenko I.V., Lobanov A.V. Russ. J. Phys. Chem. B 2018, 12, 10-16. https://doi.org/10.1134/S1990793118010074
Klimenko I.V., Lobanov A.V. Macroheterocycles 2020, 13, 142-146.
https://doi.org/10.6060/mhc200390k
Klimenko I.V., Lobanov A.V., Trusova E.A. Russ. J. Phys. Chem. B 2019, 13, 964-968. https://doi.org/10.1134/S1990793119060204
Smith C.B., Days L.C., Alajroush D.R., et al. Photochem. Photobiol. 2022, 98, 17-41. https://doi.org/10.1111/php.13467
Moghassemi S., Dadashzadeh A., Narcizo de Souza P.E., et al. Photodiagn. Photodyn Ther. 2021, 6, 102555. https://doi.org/10.1016/j.pdpdt.2021.102555
Gholizadeh M., Doustvandi M.A., Mohammadnejad F. Molecules 2021, 26, 6877. https://doi.org/10.3390/molecules26226877
Kuzyniak W., Schmidt J., Glac W., et al. Int. J. Oncol. 2017, 50, 953-963. https://doi.org/10.3892/ijo.2017.3854
Huang K., Zhang H., Yan M., et al. Dyes Pigm. 2022, 198, 109997. https://doi.org/10.1016/j.dyepig.2021.109997
Velazquez F.N., Miretti M., Baumgartner M.T., et al. Sci. Rep. 2019, 9, 3010. https://doi.org/10.1038/s41598-019-39390-0
de Araújo Silva D.N., Silva N.T.D., Sena I.A.A. Photodiagn. Photodyn. Ther. 2020, 31, 101843 (1-6). https://doi.org/10.1016/j.pdpdt.2020.101843
de Moraes M., Vasconcelos R.C., Figueiró J.P., et al. Photodiagn. Photodyn. Ther. 2015, 12, 592-597. https://doi.org/10.1016/j.pdpdt.2015.10.009
Gouterman M. In: The Porphyrins. Vol. III. Physical Chemistry, Part A (Dolphin D. Ed.), New York: Academic Press, 1978. pp. 1-165.
Ogunsipe A. FUW Trends in Science & Technology J. 2018, 3(2B), 669-681. https://www.ftstjournal.com/Digital%20Library/32B%20Article%201.php
Snow A.W. Phthalocyanine Aggregation. In: The Porphyrin Handbook, Vol. 17 (Kadish K.M., Smith K.M., Guilard R., Eds.), San Diego: Academic Press, 2003. p. 129-176. https://doi.org/10.1016/B978-0-08-092391-8.50009-1
Dhami S., Phillips D. J. Photochem. Photobiol. A 1996, 100, 77-84. https://doi.org/10.1016/S1010-6030(96)04438-3
The Porphyrin Handbook: Phthalocyanines: Properties and Materials (Kadish K.M., Smith K.M., Guilard R., Eds.), San Diego: Academic Press, 2003. 289 p.
Novotný M., Šebera J., Bensalah-Ledoux A., et al. J. Mater. Res. 2015, 31, 163-172. https://doi.org/10.1557/jmr.2015.379
Trusova E.A., Klimenko I.V., Afzal A.M., et al. New J. Chem. 2021, 45, 10448-10458. https://doi.org/10.1039/D1NJ01015H
Berger S.D., McKenzie D.R., Martin P.J. Philos. Mag. Lett. 1988, 57, 285-290. https://doi.org/10.1080/09500838808214715
Tarakanov P.A., Simakov A.O., Pushkarev V.E., et al. Dalton Trans. 2023, 52, 2124-2134. https://doi.org/10.1039/D2DT03371B
Benesi H.A., Hildebrand J.H. J. Am. Chem. Soc. 1949, 71, 2703-2707. https://doi.org/10.1021/ja01176a030
Wang R., Yu Zh. Acta Phys. - Chim. Sin. 2007, 23, 1353-1359. https://doi.org/10.1016/S1872-1508(07)60071-0
Berezin D.B., Kustov A.V., Krest'yaninov M.A., et. al. J. Mol. Liq. 2019, 283, 532-536. https://doi.org/10.1016/j.molliq.2019.03.091
Roy D., Chakraborty A., Ghosh R. RSC Adv. 2017, 7, 40563-40570. https://doi.org/10.1039/C7RA06687B
