Optical Properties of Complexes Based on Metal Phthalocyanines and Oxygen-Free Graphene

  • Inna V. Klimenko
  • Elena A. Trusova
  • Anton V. Lobanov
Keywords: zinc phthalocyanine, aluminum phthalocyanine chloride, oxygen-free graphene, hybrid structures, aggregation, optical absorption.

Abstract

Two hybrid systems based on oxygen-free graphene and AlCl- and Zn-phthalocyanines have been synthesized in aqua-organic medium and comparatively studied by optical absorption method. N,N-dimethylformamide was used as an organic solvent. It has been shown that the presence of oxygen-free graphene in the systems prevents the aggregation of phthalocyanines in aqua medium and contributes to their stabilization in monomeric form. The stability of the resulting hybrid complexes as well as the binding capacity of the components of the systems has been evaluated. The mechanisms of phthalocyanines and oxygen-free graphene interaction in aqua-organic medium have been proposed.

References

Plekhova N., Shevchenko O., Korshunova O. et al. Bioengineering (Basel) 2022; 9, 82. https://doi.org/10.3390/bioengineering9020082

Abrahamse H., Hamblin M.R. Biochem. J. 2016, 473, 347-364. https://doi.org/10.1042/BJ20150942

Nyman E.S., Hynninen P.H. J. Photochem. Photobiol. B: Biology 2004, 73, 1-28. https://doi.org/10.1016/j.jphotobiol.2003.10.002

Rosenthal I. Photochem. Photobiol. 1991, 53, 859-870. https://doi.org/10.1111/j.1751-1097.1991.tb09900.x

Klimenko I.V., Lobanov A.V. J. Biomed. Photon. Eng. 2016, 2, 040310. https://doi.org/10.18287/JBPE16.02.040310

Bonneau S., Vever-Bizet C. Expert Opin. Ther. Patents 2008, 18, 1-15. https://doi.org/10.1517/13543776.18.9.1011

Martinez De Pinillos Bayona A., Mroz P., Thunshelle C., Hamblin M.R. Chem. Biol. Drug Des. 2017, 89, 192-206. https://doi.org/10.1111/cbdd.12792

Basova T.V., Belykh D.V., Vashurin A.S. et al. J. Structural Chem. 2023, 64, 766-852. https://doi.org/10.1134/S0022476623050037

Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. Macroheterocycles 2020, 13, 311-456.

https://doi.org/10.6060/mhc200814k

Staicu A., Pascu A., Nuta A., et al. Rom. Rep. Phys. 2013, 65, 1032-1051. https://rrp.nipne.ro/2013_65_3/A38.pdf

Bonnett R. Chemical Aspects of Photodynamic Therapy. Gordon and Breach Science, Canada, 2000. 324 p. https://doi.org/10.1201/9781482296952

Madkour L.H. The Roles and Mechanisms of ROS, Oxidative Stress, and Oxidative Damage. In: Retracted Book. Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses. Nanomedicine and Nanotoxicology (Madkour L.H., Ed.), Springer, Cham., 2020, p. 139-192. https://doi.org/10.1007/978-3-030-37297-2_4

Berezin D.B., Makarov V.V., Znoyko S.A. et al. Mendeleev Commun. 2020, 30, 5, 621-623. https://doi.org/10.1016/j.mencom.2020.09.023

Zhang J., Jiang C., Longo J.P.F. et al. Acta Pharm. Sin. B 2018; 8, 137-146. https://doi.org/10.1016/j.apsb.2017.09.003

Klimenko I.V., Astakhova T.Yu., Timokhina E.N., Lobanov A.V. J. Biomed. Photon. Eng. 2023, 9, 030301-1. https://doi.org/10.18287/JBPE23.09.030301

Ohno O., Kaizu Y., Kobayashi H. J. Chem. Phys. 1993, 99, 4128-4139. https://doi.org/10.1063/1.466109

Gradova M.A., Gradov O.V., Lobanov A.V., et al. J. Porphyrins Phthalocyanines 2022, 26, 708-718. https://doi.org/10.1142/S1088424622500626

Jayme C.C., Calori I.R., Cunha E.M.F., Tedesco A.C. Spectrochim. Acta A 2018, 201, 242-248. https://doi.org/10.1016/j.saa.2018.05.009

Lebedeva N.S., Petrova O.V., Vyugin A.I. et al. Thermochim. Acta 2004, 417, 127-132. https://doi.org/10.1016/j.tca.2004.01.023

Tsubone T.M., Braga G., Vilsinski B.H., et al. J. Braz. Chem. Soc. 2014, 25, 890-897. https://doi.org/10.5935/0103-5053.20140058

Braun A., Tcherniac J. Ber. Dtsch. Chem. Ges. 1907, 40, 2709. https://doi.org/10.1002/cber.190704002202

Zvyagina A. I. Colloid J. 2022, 84, 633-641. https://doi.org/10.1134/S1061933X22700090

Ali H.E.A., Piskin M., Altun S., et al. J. Lumin. 2016, 173, 113-119. https://doi.org/10.1016/j.jlumin.2015.12.010

de la Torre G., Nicolau M., Torres T. Phthalocyanines: Synthesis, Supramolecular Organization, and Physical Properties. In: Supramolecular Photosensitive and Electroactive Materials; Elsevier: Amsterdam, Netherlands, 2001. p. 1-111. https://doi.org/10.1016/B978-012513904-5/50003-X

Claessens C. G., Hahn U., Torres T. Chem. Rec. 2008, 8, 75-97. https://doi.org/10.1002/tcr.20139

Cong F., Ning B., Ji Y. et al. Dyes Pigm. 2008, 77, 686-690. https://doi.org/10.1016/j.dyepig.2007.07.010

Medyouni R., Hallouma B., Mansour L. et al. J. Chem. Res. 2017, 41, 291-295. https://doi.org/10.3184/174751917X14931195075571

Klimenko I.V., Trusova E.A., Shchegolikhin A.N., Lobanov A.V., Jurina L.V. Fuller. Nanotub. Carb. Nanostruct. 2022, 30, 1, 33-39, https://doi.org/10.1080/1536383X.2021.1976754

Dąbrowski J.M., Arnaut L.G. Photochem. Photobiol. Sci. 2015, 14, 1-14. https://doi.org/10.1039/c5pp00132c

Palewska K., Sworakowski J., Lipiński J. Opt. Mater. 2012, 34, 1717-1724. https://doi.org/10.1016/j.optmat.2012.02.009

Swart G., Fourie-Müller E., Swarts J. Molecules 2022, 27, 1529. https://doi.org/10.3390/molecules27051529

Nyokong T. Coord. Chem. Rev. 2007, 251, 1707-1722. https://doi.org/10.1016/j.ccr.2006.11.011

Janczak J. ACS Omega 2019, 4, 3673−3683. https://doi.org/10.1021/acsomega.8b03055

Moon H.K., Son M., Park J.E. et al. NPG Asia Materials 2012, 4, e12. https://doi.org/10.1038/am.2012.22

Carneiro Z.A., de Moraes J.C., Rodrigues F.P., et al. J. Inorg. Biochem. 2011, 105, 1035-1043. https://doi.org/10.1016/j.jinorgbio.2011.04.011

Primo F., Rodrigues M.M.A., Simioni A.R., et al. J. Magn. Magn. Mater. 2008, 320, e211-e214. https://doi.org/10.1016/j.jmmm.2008.02.050

Rak J., Pouckova P., Benes J., Vetvicka D. Anticancer Res. 2019, 39, 3323-3339. https://doi.org/10.21873/anticanres.13475

Koifman O.I., Hanack M., Syrbu S.A., Lyubimtsev A.V. Russ. Chem. Bull., Int. Ed. 2013, 62, 896-917. https://doi.org/10.1007/s11172-013-0121-2

Gradova M.A,. Ostashevskaya I.I., Gradov O.V., et al. Macroheterocycles 2018, 11, 404-411. https://doi.org/10.6060/mhc181001g

Silva E.P.O., Santos E.D., Gonçalves C.S., et al. Laser Phys. 2016, 26, 105601. https://doi.org/10.1088/1054-660X/26/10/105601

Güzel E., AtsayA., Nalbantoglu S., et al. Dyes Pigm. 2013, 97, 238-243. https://doi.org/10.1016/j.dyepig.2012.12.027

Klimenko I.V., Lobanov A.V. Russ. J. Phys. Chem. B 2018, 12, 10-16. https://doi.org/10.1134/S1990793118010074

Klimenko I.V., Lobanov A.V. Macroheterocycles 2020, 13, 142-146.

https://doi.org/10.6060/mhc200390k

Klimenko I.V., Lobanov A.V., Trusova E.A. Russ. J. Phys. Chem. B 2019, 13, 964-968. https://doi.org/10.1134/S1990793119060204

Smith C.B., Days L.C., Alajroush D.R., et al. Photochem. Photobiol. 2022, 98, 17-41. https://doi.org/10.1111/php.13467

Moghassemi S., Dadashzadeh A., Narcizo de Souza P.E., et al. Photodiagn. Photodyn Ther. 2021, 6, 102555. https://doi.org/10.1016/j.pdpdt.2021.102555

Gholizadeh M., Doustvandi M.A., Mohammadnejad F. Molecules 2021, 26, 6877. https://doi.org/10.3390/molecules26226877

Kuzyniak W., Schmidt J., Glac W., et al. Int. J. Oncol. 2017, 50, 953-963. https://doi.org/10.3892/ijo.2017.3854

Huang K., Zhang H., Yan M., et al. Dyes Pigm. 2022, 198, 109997. https://doi.org/10.1016/j.dyepig.2021.109997

Velazquez F.N., Miretti M., Baumgartner M.T., et al. Sci. Rep. 2019, 9, 3010. https://doi.org/10.1038/s41598-019-39390-0

de Araújo Silva D.N., Silva N.T.D., Sena I.A.A. Photodiagn. Photodyn. Ther. 2020, 31, 101843 (1-6). https://doi.org/10.1016/j.pdpdt.2020.101843

de Moraes M., Vasconcelos R.C., Figueiró J.P., et al. Photodiagn. Photodyn. Ther. 2015, 12, 592-597. https://doi.org/10.1016/j.pdpdt.2015.10.009

Gouterman M. In: The Porphyrins. Vol. III. Physical Chemistry, Part A (Dolphin D. Ed.), New York: Academic Press, 1978. pp. 1-165.

Ogunsipe A. FUW Trends in Science & Technology J. 2018, 3(2B), 669-681. https://www.ftstjournal.com/Digital%20Library/32B%20Article%201.php

Snow A.W. Phthalocyanine Aggregation. In: The Porphyrin Handbook, Vol. 17 (Kadish K.M., Smith K.M., Guilard R., Eds.), San Diego: Academic Press, 2003. p. 129-176. https://doi.org/10.1016/B978-0-08-092391-8.50009-1

Dhami S., Phillips D. J. Photochem. Photobiol. A 1996, 100, 77-84. https://doi.org/10.1016/S1010-6030(96)04438-3

The Porphyrin Handbook: Phthalocyanines: Properties and Materials (Kadish K.M., Smith K.M., Guilard R., Eds.), San Diego: Academic Press, 2003. 289 p.

Novotný M., Šebera J., Bensalah-Ledoux A., et al. J. Mater. Res. 2015, 31, 163-172. https://doi.org/10.1557/jmr.2015.379

Trusova E.A., Klimenko I.V., Afzal A.M., et al. New J. Chem. 2021, 45, 10448-10458. https://doi.org/10.1039/D1NJ01015H

Berger S.D., McKenzie D.R., Martin P.J. Philos. Mag. Lett. 1988, 57, 285-290. https://doi.org/10.1080/09500838808214715

Tarakanov P.A., Simakov A.O., Pushkarev V.E., et al. Dalton Trans. 2023, 52, 2124-2134. https://doi.org/10.1039/D2DT03371B

Benesi H.A., Hildebrand J.H. J. Am. Chem. Soc. 1949, 71, 2703-2707. https://doi.org/10.1021/ja01176a030

Wang R., Yu Zh. Acta Phys. - Chim. Sin. 2007, 23, 1353-1359. https://doi.org/10.1016/S1872-1508(07)60071-0

Berezin D.B., Kustov A.V., Krest'yaninov M.A., et. al. J. Mol. Liq. 2019, 283, 532-536. https://doi.org/10.1016/j.molliq.2019.03.091

Roy D., Chakraborty A., Ghosh R. RSC Adv. 2017, 7, 40563-40570. https://doi.org/10.1039/C7RA06687B

Published
2024-06-21
How to Cite
Klimenko, I., Trusova, E., & Lobanov, A. (2024). Optical Properties of Complexes Based on Metal Phthalocyanines and Oxygen-Free Graphene. Macroheterocycles, 17(3), 224-230. https://doi.org/10.6060/mhc245851k