Coordination Reaction of Poly-4-vinylpyridine by Cobalt Porphyrinate in Nanostructured Layers at the Air-Water Interface
Аннотация
Nanostructured layers of poly-4-vinylpyridine (P4VP) are formed at air-water interfaces. Quantitative characteristics of their structure and properties are analyzed within the framework of the model of nanostructured M-monolayer. For the first time, the coordination reaction of poly-4-vinylpyridine with cobalt tetra(p-methoxyphenyl)porphyrinate (CoTpMPP) was carried out in nanostructured layers at the air-water interface. The resulting Langmuir-Schaefer films of P4VP-CoTpMPP were studied by UV-Vis spectroscopy.
Литература
Sorokin A.B. Chem. Rev. 2013, 113, 8152. https://doi.org/10.1021/cr4000072
Yang S., Yu Y., Gao X., Zhang Z., Wang F. Chem. Soc. Rev. 2021, 50, 12985. https://doi.org/10.1039/D0CS01605E
Demir E., Silah H., Uslu B. Crit. Rev. Anal. Chem. 2022, 52, 425. https://doi.org/10.1080/10408347.2020.1806702
De la Torre G., Bottari G., Torres T. Adv. Energy Mater. 2017, 7, 1601700. https://doi.org/10.1002/aenm.201601700
Battersby A.R. Nat. Prod. Rep. 2000, 17, 507-526. https://doi.org/10.1039/b002635m
Warren M.J. Tetrapyrroles: Birth, Life and Death. Springer Science & Business Media. 2009, 406 p.
Keely B.J. Geochemistry of Chlorophylls. In: Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, Vol. 25 (Grimm B., Porra R.J., Rüdiger W., Scheer H., Eds.) Springer, Dordrecht, 2006, p. 535-561. https://doi.org/10.1007/1-4020-4516-6_37
Wojaczynski J., Latos-Grażyński L. Coord. Chem. Rev. 2000, 204, 113-171. https://doi.org/10.1016/S0010-8545(99)00207-6
Valkova L., Borovkov N., Pisani M., Rustichelli F. Thin Solid Films 2001, 401, 267. https://doi.org/10.1016/S0040-6090(01)01475-4
Petrova M.V., Maiorova L.A., Bulkina T.A., Ageeva T.A., Koifman O.I., Gromova O.A. Macroheterocycles 2014, 7, 267-271. https://doi.org/10.6060/mhc131163m
Valkova L., Borovkov N., Kopranenkov V., Pisani M., Bossi M., Rustichelli F. J. Mater. Sci. Eng. C 2002, 22, 167. https://doi.org/10.1016/S0928-4931(02)00166-2
Zhang Z., Wojtas L., Zaworotko M.J. Cryst. Growth Des. 2014, 14, 1526. https://doi.org/10.1021/cg500192d
Bo Q., Zhao Y. J. Polym. Sci. Pol. Chem. 2006, 44, 1734. https://doi.org/10.1002/pola.21287
Tagliatesta P. Carbone M., Encapsulated Catalysts 2017, 249-278. https://doi.org/10.1016/B978-0-12-803836-9.00008-0
Managa M., Nyokong T. Macroheterocycles 2017, 10, 467. https://doi.org/10.6060/mhc171141n
Zhang Z., Zhang L., Wojtas L., Nugent P., Eddaoudi M., Zaworotko M.J. J. Am. Chem. Soc. 2012, 134, 924. https://doi.org/10.1021/ja209643b
Wohrle D., Pomogailo A.D. Metal Complexes and Metals in Macromolecules. Wiley-VCH. Weinheim, 2003. 667 p
Wark M. In: The Porphyrin Handbook, Vol. 17. 2003, p. 247-283. https://doi.org/10.1016/B978-0-08-092391-8.50011-X
Sanders J.K.M., Bampos N., Clyde-Watson Z., Darling S.L., Hawley J.C., Kim H.-J., Mak C.C., Webb S.J. Axial Coordination Chemistry of Metalloporphyrins. In: The Porphyrin Handbook, Vol. 3. 2000, p. 48.
Valkova L., Menelle A., Borovkov N., Erokhin V., Pisani M., Ciuchi F., Carsughi F., Spinozzi F., Pergolini M., Padke R., Bernstorff S., Rustichelli F. J. Appl. Cryst. 2003, 36, 758-762. https://doi.org/10.1107/S0021889803004965
Valkova L.A., Shabyshev L.S., Borovkov N.Y., Feigin L.A., Rustichelli F. J. Incl. Phenom. Macrocycl. Chem. 1999, 35, 243. https://doi.org/10.1023/A:1008147031935
Maiorova L.A., Koifman O.I., Burmistrov V.A., Kuvshinova S.A., Mamontov A.O. Prot. Met. Phys. Chem. Surf. 2015, 51, 85. https://doi.org/10.1134/S2070205115010074
Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Izv. Akad. Nauk Fiz. 1997, 61, 631.
Shin J., Kim J., Park S.H., Ha T.X. ACS Nano 2018, 12, 9423. https://doi.org/10.1021/acsnano.8b04639
Zhang T.D., Deng X., Wang X., Chen M.Y., Wang L.L., Li X.T., Shi C.Y., Lin W.P., Li W.U., Pan Q., Ni W., Pan X., Yin T., Yin D.C. ACS Appl. Mater. Interfaces. 2021, 13, 46391−46405. https://doi.org/10.1021/acsami.1c14634
Xiong R., Kim H.Sh., Zhang Sh., Kim S., Korolovych V.F., Ma R., Yingling Y.G., Lu C., Tsukruk V.V. ACS Nano 2017, 11, 12008−12019. https://doi.org/10.1021/acsnano.7b04235
Rubia-Payá C., de Miguel G., Martín-Romero M.T., Giner-Casares J.J., Camacho L. Adv. Colloid Interfac. Sci. 2015, 225, 134. https://doi.org/10.1016/j.cis.2015.08.012
Valkova L.A., Shabyshev L.S., Feigin L.A., Akopova O.B. Mol. Cryst. Liq. Cryst. Sci. Tech. C. 1996, 6, 291.
Valkova L.A., Betrencourt C., Hochapfel A., Myagkov I.V., Feigin L.A. Mol. Cryst. Liq. Cryst. Sci. Tech. A. 1996, 287, 269. https://doi.org/10.1080/10587259608038763
Yamamoto S., Nagatani H., Imura H. Langmuir 2017, 33, 10134. https://doi.org/10.1021/acs.langmuir.7b01422
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2020, 342, 136064. https://doi.org/10.1016/j.electacta.2020.136064
Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Electrochim. Acta 2018, 292, 256. https://doi.org/10.1016/j.electacta.2018.09.127
Mon M., Bruno R., Ferrando-Soria J., Armentano D., Pardo E. J. Mater. Chem. A 2018, 6, 4912− 4947. https://doi.org/10.1039/C8TA00264A
Li D.-J., Li Q.-H., Gu Z.-G., Zhang J. Nano Lett. 2021, 21, 10012−10018. https://doi.org/10.1021/acs.nanolett.1c03655
Ariga K., Nishikawa M., Mori T., Takeya J., Shrestha L.K., Hill J.P. Sci. Technol. Adv. Mater. 2019, 20, 51-95. https://doi.org/10.1080/14686996.2018.1553108
Webre W.A., Gobeze H.B., Shao S., Karr P.A., Ariga K., Hill J.P., D'Souza F. Chem. Commun. 2018, 54, 1351-1354. https://doi.org/10.1039/C7CC09524D
Topchieva I.N., Osipova S.V., Banatskaya M.I., Valkova L.A. Dokl. Akad. Nauk SSSR 1989, 308, 910-913.
Valkova L.A., Glibin A.S., Valli L. Colloid J. 2008, 70, 6-11. https://doi.org/10.1134/s1061933x0801002x
Oldacre A.N., Friedman A.E., Cook T.R. J. Am. Chem. Soc. 2017, 139, 1424−1427. https://doi.org/10.1021/jacs.6b12404
Brenner W., Ronson T.K., Nitschke J.R. J. Am. Chem. Soc. 2017, 139, 75-78. https://doi.org/10.1021/jacs.6b11523
Valkova L.A., Erokhin V.V., Glibin A.S., Koifman O.I. J. Porphyrins Phthalocyanines 2011, 15, 1044-1051. https://doi.org/10.1142/S1088424611004026
Ariga K., Mori T., Nakanishi W., Hill J.P. Phys. Chem. Chem. Phys. 2017, 19, 23658-23676. https://doi.org/10.1039/C7CP02280H
Ariga K., Tsai K.C., Shrestha L.K., Hsu S.H. Mater. Chem. Front. 2021, 5, 1018-1032. https://doi.org/10.1039/D0QM00615G
Huang Z., Qin B., Chen L., Xu J.F., Faul C.F., Zhang X. Macromol. Rapid Commun. 2017, 38, 1700312−1700326. https://doi.org/10.1002/marc.201700312
Yang L., Tan X., Wang Z., Zhang X. Chem. Rev. 2015, 115, 7196−7239. https://doi.org/10.1021/cr500633b
Shee N.K., Kim M.K., Kim H.J. Nanomaterials 2020, 10, 2314-2329. https://doi.org/10.3390/nano10112314
Huo Z., Lates V., Ibrahim H., Goldmann M., Xu H., Yi T. Eur. J. Org. Chem. 2021, 6636−6645. https://doi.org/10.1002/ejoc.202100918
Stulz E. Acc. Chem. Res. 2017, 50, 823−831. https://doi.org/10.1021/acs.accounts.6b00583
Maiorova L.A., Kobayashi N., Zyablov S.V., Bykov V.A., Nesterov S.I., Kozlov A.V. Langmuir 2018, 34, 9322−9329. https://doi.org/10.1021/acs.langmuir.8b00905
Kharitonova N.V., Maiorova L.A., Koifman O.I. J. Porphyrins Phthalocyanines 2018, 22, 509−512. https://doi.org/10.1142/S1088424618500505
Vu T.T., Maiorova L.A., Berezin D.B., Koifman O.I. Macroheterocycles 2016, 9, 73-79. https://doi.org/10.6060/mhc151205m
Karlyuk M.V., Krygin Y.Y., Maiorova L.A., Ageeva T.A., Koifman O.I. Russ. Chem. Bull. 2013, 62, 471-479. https://doi.org/10.1007/s11172-013-0066-5
Maiorova L.A., Kobayashi N., Salnikov D.S., Kuzmin S.M., Basova T.V., Koifman O.I., Parfenyuk V.I., Bykov V.A., Bobrov Y.A., Yang P. Langmuir 2023, 39, 3246−3254.
https://doi.org/10.1021/acs.langmuir.2c02964
Singh A., Samanta S., Kumar A., Debnath A.K., Prasad R., Veerender P., Balouria V., Aswal D.K., Gupta S.K. Org. Electron. 2012, 13, 2600-2604. https://doi.org/10.1016/j.orgel.2012.07.022
Sizuna T., Bouveta M., Chena Y., Suissea J.-M., Barochia G., Rossignol J. Sens. Actuators B 2011, 159, 163-170. https://doi.org/10.1016/j.snb.2011.06.067
Klyamer D.D., Sukhikh A.S., Krasnov P.O., Gromilov S.A., Morozova N.B., Basova T.V. Appl. Surf. Sci. 2016, 372, 79-86. https://doi.org/10.1016/j.apsusc.2016.03.066
Klyamer D., Shao W., Krasnov P., Sukhikh A., Dorovskikh S., Popovetskiy P., Li X., Basova T. Biosensors 2023, 13, 484. https://doi.org/10.3390/bios13040484
Bohrer F.I., Sharoni A., Colesniuc C., Park J., Schuller I.K., Kummel A.C., Trogler W.C. J. Am. Chem. Soc. 2007, 129, 5640-5646. https://doi.org/10.1021/ja0689379
Koifman O.I., Ageeva T.A. Porphyrin Polymers. Synthesis, Properties, Applications. Moscow: LENAND. 2018, 300 p. [Койфман О.И., Агеева Т.А. Порфиринполимеры: Синтез, свойства, применение. URSS. 2018. 300 с.] ISBN 978-5-9710-6121-2.
Esteves C.H.A., Iglesias B.A., Li R.W.C., Ogawa T., Gruber J. Sensor. Actuat. B-Chem. 2014, 193, 136-141. https://doi.org/10.1016/j.snb.2013.11.022
Ribeiro S.M., Serra A.C., d'A Gonsalves Rocha A.M. J. Mol. Catal. A-Chem. 2010, 326, 121-127. https://doi.org/10.1016/j.molcata.2010.05.001
Ye Yu.-J., Zhou X.-T., Huang J.-W., Cai J.-H. J. Mol. Catal. A-Chem. 2010, 331, 29‒34. https://doi.org/10.1016/j.molcata.2010.07.012
Lv Y-Y., Wu J., Xu Z-K. Sensor. Actuat. B-Chem. 2010, 148, 233-239. https://doi.org/10.1016/j.snb.2010.05.029
Patel E.K., Oswal R.J. IJRPC. 2012, 2(2), 237.
Chai Z., Jing Ch., Liu Y., An Y., Shi L. Colloid Polym Sci. 2014, 292, 1329-1337. https://doi.org/10.1007/s00396-014-3186-z
Niu X., Li N., Zhu Ch., Liu L., Zhao Y., Ge Y., Chen Y., Xu Z., Lu Y., Sui M., Li Y., Tarasov A., Goodilin E.A., Zhou H., Chen Q. J. Mater. Chem. A 2019, 7, 7338. https://doi.org/10.1039/C9TA01070J
Nasirmahale L.N., Jolodar O.G., Shirini F., Tajik H. Polycycl. Aromat. Comp. 2019, 41, 199‒210.
https://doi.org/10.1080/10406638.2019.1576748
Shanmugam Р., Wei Ei, Xie Jimin, Murugan Eagambaram Asian J. Chem. 2019, 31, 235-246. https://doi.org/10.14233/ajchem.2019.21674