Synthetic Strategies towards Terpyridine-Porphyrin Conjugates and Their Applications
Аннотация
Стратегии синтеза конъюгатов порфириноидов и молекул терпиридина представляют давний интерес ввиду применения полученных производных во многих областях, таких как фотокатализ, хемосенсорика и супрамолекулярная химия, медицина и др. В данном обзоре систематизированы литературные данные по синтезу получения терпиридинов, и методам функционализации порфириновых макроциклов данными молекулами. Рассмотренные стратегии включают как ковалентную сборку конъюгатов, так получение супрамолекулярных терпиридин-порфириновых конъюгатов. Показаны результаты исследований по применению конъюгатов в ряде областей.
Литература
Vallejo M.C.S., Reis M.J.A., Pereira A.M.V.M., Serra V.V., Cavaleiro J.A.S., Moura N.M.M., Neves M.G.P.M.S. Dyes Pigm. 2021, 191, 109298. https://doi.org/10.1016/j.dyepig.2021.109298
Constable E.C. The Coordination Chemistry of 2,2′:6′,2″-Terpyridine and Higher Oligopyridines. In: Advances in Inorganic Chemistry and Radiochemistry, Vol. 30 (Emeléus H.J., Ed.), Elsevier, 1986, pp. 69-121. https://doi.org/10.1016/S0898-8838(08)60240-8
Constable E.C. Chem. Soc. Rev. 2007, 36, 246-253. https://doi.org/10.1039/B601166G
Melton D.L., VanDerveer D.G., Hancock R.D. Inorg. Chem. 2006, 45, 9306-9314. https://doi.org/10.1021/ic061010p
Hamilton J.M., Whitehead J.R., Williams N.J., El Ojaimi M., Thummel R.P., Hancock R.D. Inorg. Chem. 2011, 50, 3785-3790. https://doi.org/10.1021/ic200184c
Carolan A.N., Mroz A.E., El Ojaimi M., VanDerveer D.G., Thummel R.P., Hancock R.D. Inorg. Chem. 2012, 51, 3007-3015. https://doi.org/10.1021/ic202337v
Hancock R.D. Chem. Soc. Rev. 2013, 42, 1500-1524. https://doi.org/10.1039/C2CS35224A
McPherson J.N., Das B., Colbran S.B. Coord. Chem. Rev. 2018, 375, 285-332. https://doi.org/10.1016/j.ccr.2018.01.012
Mughal E.U., Mirzaei M., Sadiq A., Fatima S., Naseem A., Naeem N., Fatima N., Kausar S., Altaf A.A., Zafar M.N., Khan B.A., R. Soc. Open Sci. 2020, 7, 201208. https://doi.org/10.1098/rsos.201208
McMillin D.R., Moore J.J. Coord. Chem. Rev. 2002, 229, 113-121. https://doi.org/10.1016/S0010-8545(02)00041-3
Wei C., He Y., Shi X., Song Z. Coord. Chem. Rev. 2019, 385, 1-19. https://doi.org/10.1016/j.ccr.2019.01.005
Ou Z., Wang Y., Gao Y., Wang X., Qian Y., Li Y., Wang X. J. Inorg. Biochem. 2017, 166, 126-134. https://doi.org/10.1016/j.jinorgbio.2016.11.012
Jarjayes O., Lavergne T., Thomas F. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, Wiley, 2020, pp. 1-24. https://doi.org/10.1002/9781119951438.eibc2748
Eryazici I., Moorefield C.N., Newkome G.R. Chem. Rev. 2008, 108, 1834-1895. https://doi.org/10.1021/cr0781059
Huang H., Banerjee S., Qiu K., Zhang P., Blacque O., Malcomson T., Paterson M.J., Clarkson G.J., Staniforth M., Stavros V.G., Gasser G., Chao H., Sadler P.J. Nat. Chem. 2019, 11, 1041-1048. https://doi.org/10.1038/s41557-019-0328-4
Jiang J., Li J., Liu C., Liu R., Liang X., Zhou Y., Pan L., Chen H., Ma Z. J. Biol. Inorg. Chem. 2020, 25, 311-324. https://doi.org/10.1007/s00775-020-01763-6
Abhijnakrishna R., Magesh K., Ayushi A., Velmathi S. Coord. Chem. Rev. 2023, 496, 215380. https://doi.org/10.1016/j.ccr.2023.215380
Panicker R.R., Sivaramakrishna A. Coord. Chem. Rev. 2022, 459, 214426. https://doi.org/10.1016/j.ccr.2022.214426
Morgan G.T., Burstall F.H. J. Chem. Soc. 1932, 20-30. https://doi.org/10.1039/jr9320000020
Newkome G.R., Fishel D.L. J. Org. Chem. 1972, 37, 1329-1336. https://doi.org/10.1021/jo00974a011
Pabst G.R., Sauer J. Tetrahedron 1999, 55, 5067-5088. https://doi.org/10.1016/S0040-4020(99)00179-9
Tohda Y., Eiraku M., Nakagawa T., Usami Y., Ariga M., Kawashima T., Tani K., Watanabe H., Mori Y. Bull. Chem. Soc. Jpn. 1990, 63, 2820-2827. https://doi.org/10.1246/bcsj.63.2820
Bossert F., Meyer H., Wehinger E. Angew. Chem. Int. Ed. 1981, 20, 762-769. https://doi.org/10.1002/anie.198107621
Jameson D.L., Guise L.E. Tetrahedron Lett. 1991, 32, 1999-2002. https://doi.org/10.1016/S0040-4039(00)78891-5
Potts K.T., Cipullo M.J., Ralli P., Theodoridis G. J. Org. Chem. 1982, 47, 3027-3038. https://doi.org/10.1021/jo00137a001
Kröhnke F. Angew. Chem. Int. Ed. 1963, 2, 225-238. https://doi.org/10.1002/anie.196302251
Heller M., Schubert U.S. Synlett. 2002, 0751-0754. https://doi.org/10.1055/s-2002-25357
Schubert U.S., Hofmeier H., Newkome G.R. Modern Terpyridine Chemistry, Wiley‐VCH Verlag GmbH & Co. KGaA, 2006. https://doi.org/10.1002/3527608486
Tu S., Jia R., Jiang B., Zhang J., Zhang Y., Yao C., Ji S. Tetrahedron 2007, 63, 381-388. https://doi.org/10.1016/j.tet.2006.10.069
Tu S., Li T., Shi F., Wang Q., Zhang J., Xu J., Zhu X., Zhang X., Zhu S., Shi D. Synthesis (Stuttg.) 2005, 3045-3050. https://doi.org/10.1055/s-2005-916039
Pilfold J.L. The Synthesis of Organoiron Complexes and Coordination Polymers Containing Functionalized Terpyridines. MSc deg. Dis., University of British Columbia, 2013. https://doi.org/10.14288/1.0073686
Wang J., Hanan G. Synlett 2005, 1251-1254. https://doi.org/10.1055/s-2005-868481
Kröhnke F. Synthesis (Stuttg.) 1976, 1-24. https://doi.org/10.1055/s-1976-23941
Sasaki I., Daran J.C., Balavoine G.G.A. Synthesis (Stuttg) 1999, 815-820. https://doi.org/10.1055/s-1999-3481
Fallahpour R., Neuburger M., Zehnder M. Polyhedron 1999, 18, 2445-2454. https://doi.org/10.1016/S0277-5387(99)00147-3
Miyaura N., Suzuki A. Chem. Rev. 1995, 95, 2457-2483. https://doi.org/10.1021/cr00039a007
Stille J.K. Angew. Chem. Int. Ed. 1986, 25, 508-524. https://doi.org/10.1002/anie.198605081
Lehmann U., Henze O., Schlüter A.D. Chem. Eur. J. 1999, 5, 854-859. https://doi.org/10.1002/(SICI)1521-3765(19990301)5:3<854::AID-CHEM854>3.0.CO;2-8
Schubert U.S., Eschbaumer C. Org. Lett. 1999, 1, 1027-1029. https://doi.org/10.1021/ol990808s
Fujiwara H., Nishigaki Y., Matsushita A., Matsui T. In: Hybrid Perovskite Solar Cells, Wiley, 2021, pp. 91-121. https://doi.org/10.1002/9783527825851.ch4
Chavarot M., Pikramenou Z. Tetrahedron Lett. 1999, 40, 6865-6868. https://doi.org/10.1016/S0040-4039(99)01386-6
Savage S.A., Smith A.P., Fraser C.L. J. Org. Chem. 1998, 63, 10048-10051. https://doi.org/10.1021/jo981505z
Collin J.-P., Harriman A., Heitz V., Odobel F., Sauvage J.-P. J. Am. Chem. Soc. 1994, 116, 5679-5690. https://doi.org/10.1021/ja00092a020
Adler A.D., Longo F.R., Finarelli J.D., Goldmacher J., Assour J., Korsakoff L. J. Org. Chem. 1967, 32, 476-476. https://doi.org/10.1021/jo01288a053
Arsenault G.P., Bullock E., MacDonald S.F. J. Am. Chem. Soc. 1960, 82, 4384-4389. https://doi.org/10.1021/ja01501a066
Lindsey J.S., Schreiman I.C., Hsu H.C., Kearney P.C., Marguerettaz A.M. J. Org. Chem. 1987, 52, 827-836. https://doi.org/10.1021/jo00381a022
Chambron J.-C., Collin J.-P., Dixon I., Heitz V., Salom-Roig X.J., Sauvage J.-P. J. Porphyrins Phthalocyanines 2004, 8, 82-92. https://doi.org/10.1142/S1088424604000076
Filosa A., Wang H., Li W., Zhang W., Ngo E., Piccolo J.E., Yang H., Li X. Chinese J. Chem. 2019, 37, 1167-1173. https://doi.org/10.1002/cjoc.201900177
Miyaura N., Yanagi T., Suzuki A. Synth. Commun. 1981, 11, 513-519. https://doi.org/10.1080/00397918108063618
Collin J.P., Heitz V., Odobel F., Harriman A., Sauvage J.P. J. Am. Chem. Soc. 1994, 116, 5679-5690. https://doi.org/10.1021/ja00092a020
Flamigni L., Armaroli N., Barigelletti F., Balzani V., Collin J.-P., Dalbavie J.-O., Heitz V., Sauvage J.-P. J. Phys. Chem. B 1997, 101, 5936-5943. https://doi.org/10.1021/jp963773b
Flamigni L., Barigelletti F., Armaroli N., Collin J.-P., Sauvage J.-P., Williams J.A.G. Chem. Eur. J. 1998, 4, 1744-1754. https://doi.org/10.1002/(SICI)1521-3765(19980904)4:9<1744::AID-CHEM1744>3.0.CO;2-A
Dixon I.M., Collin J.P. J. Porphyrins Phthalocyanines 2001, 5, 600-607. https://doi.org/10.1002/jpp.370
Lee C.-H., Lindsey J.S. Tetrahedron 1994, 50, 11427-11440. https://doi.org/10.1016/S0040-4020(01)89282-6
Cho T.J., Shreiner C.D., Hwang S.-H., Moorefield C.N., Courneya B., Godínez L.A., Manríquez J., Jeong K.-U., Cheng S.Z.D., Newkome G.R. Chem. Commun. 2007, 14, 4456. https://doi.org/10.1039/b707852h
Ding X., Yu B., Han B., Wang H., Zheng T., Chen B., Wang J., Yu Z., Sun T., Fu X., Qi D., Jiang J. ACS Appl. Mater. Interfaces 2022, 14, 8048-8057. https://doi.org/10.1021/acsami.1c23941
Liu C., Wang T., Ji J., Wang C., Wang H., Jin P., Zhou W., Jiang J. J. Mater. Chem. C 2019, 7, 10240-10246. https://doi.org/10.1039/C9TC02778E
Suzuki M., Uehara T., Arano Y., Hoshino T., Neya S. Tetrahedron Lett. 2011, 52, 7164-7167. https://doi.org/10.1016/j.tetlet.2011.10.132
Moura N.M.M., Faustino M.A.F., Neves M.G.P.M.S., Paz F.A.A., Silva A.M.S., Tomé A.C., Cavaleiro J.A.S. Chem. Commun. 2012, 48, 6142. https://doi.org/10.1039/c2cc30727h
Moura N.M.M., Ramos C.I.V., Linhares I., Santos S.M., Faustino M.A.F., Almeida A., Cavaleiro J.A.S., Amado F.M.L., Lodeiro C., Neves M.G.P.M.S. RSC Adv. 2016, 6, 110674-110685. https://doi.org/10.1039/C6RA25373C
Lanzilotto A., Büldt L.A., Schmidt H.C., Prescimone A., Wenger O.S., Constable E.C., Housecroft C.E. RSC Adv. 2016, 6, 15370-15381. https://doi.org/10.1039/C5RA27397H
O'Regan B., Grätzel M. Nature 1991, 353, 737-740. https://doi.org/10.1038/353737a0
Lanzilotto A., Kuss-Petermann M., Wenger O.S., Constable E.C., Housecroft C.E. Photochem. Photobiol. Sci. 2017, 16, 585-595. https://doi.org/10.1039/c6pp00425c
Abdulaeva I.A., Birin K.P., Michalak J., Romieu A., Stern C., Bessmertnykh-Lemeune A., Guilard R., Gorbunova Y.G., Tsivadze A.Y. New J. Chem. 2016, 40, 5758-5774. https://doi.org/10.1039/C5NJ03247D
Yin B., Liang X., Zhu W., Xu L., Zhou M., Song J. Chinese Chem. Lett. 2018, 29, 99-101. https://doi.org/10.1016/j.cclet.2017.05.003
Luo H.Y., Jiang J.H., Zhang X.B., Li C.Y., Shen G.L., Yu R.Q. Talanta 2007, 72, 575-581. https://doi.org/10.1016/j.talanta.2006.11.028
Charisiadis A., Glymenaki E., Planchat A., Margiola S., Lavergne-Bril A.C., Nikoloudakis E., Nikolaou V., Charalambidis G., Coutsolelos A.G., Odobel F. Dyes Pigm. 2021, 185, 108908. https://doi.org/10.1016/j.dyepig.2020.108908
Baumann E. Berichte der Dtsch. Chem. Gesellschaft 1886, 19, 3218-3222. https://doi.org/10.1002/cber.188601902348
Xie T.-Z., Guo K., Li J.-Y., Zhang B., Zheng K., Moorefield C.N., Saunders M.J., Endres K.J., Sallam S., Wesdemiotis C., Newkome G.R. J. Inorg. Organomet. Polym. Mater. 2016, 26, 907-913. https://doi.org/10.1007/s10904-016-0393-8
Ishizuka T., Sinks L.E., Song K., Hung S.-T., Nayak A., Clays K., Therien M.J. J. Am. Chem. Soc. 2011, 133, 2884-2896. https://doi.org/10.1021/ja105004k
Wu Z.-Y., Huang L.-J., Zhong R. Polyhedron 2021, 194, 114818. https://doi.org/10.1016/j.poly.2020.114818
Williamson A.W. Philosophical Magazine 1850, 37, 350-356. https://doi.org/10.1080/14786445008646627
Gaikwad S., Lal Saha M., Samanta D., Schmittel M. Chem. Commun. 2017, 53, 8034-8037. https://doi.org/10.1039/C7CC04078D
Sonogashira K. Palladium-Catalyzed Alkynylation: Sonogashira Alkyne Synthesis, Ch. III.2.8.1. In: Handbook of Organopalladium Chemistry for Organic Synthesis (Negishi Ei-ichi, Ed.) 2002. https://doi.org/10.1002/0471212466.ch22
Bätz T., Enke M., Zechel S., Hager M.D., Schubert U.S. Macromol. Chem. Phys. 2021, 222, 2100295. https://doi.org/10.1002/macp.202100295
Krishnan V., Tronin A., Strzalka J., Fry H.C., Therien M.J., Blasie J.K. J. Am. Chem. Soc. 2010, 132, 11083-11092. https://doi.org/10.1021/ja1010702
Takahashi S., Kuroyama Y., Sonogashira K., Hagihara N. ChemInform 1980, 11, 1980. https://doi.org/10.1002/chin.198047133
Liew J.Y., Brown J.J., Moore E.G., Schwalbe M. Chem. Eur. J. 2016, 22, 16178-16186. https://doi.org/10.1002/chem.201602189
Linke‐Schaetzel M., Anson C.E., Powell A.K., Buth G., Palomares E., Durrant J.D., Balaban T.S., Lehn J. Chem. Eur. J. 2006, 12, 1931-1940. https://doi.org/10.1002/chem.200500602
Li M., Shi Y.-Q., Gan X., Su L., Liang J., Wu H., You Y., Che M., Su P., Wu T., Zhang Z., Zhang W., Yao L.-Y., Wang P., Xie T.-Z. Inorg. Chem. 2023, 62, 4393-4398. https://doi.org/10.1021/acs.inorgchem.2c03999
Miyaura N., Yamada K., Suzuki A. Tetrahedron Lett. 1979, 20, 3437-3440. https://doi.org/10.1016/S0040-4039(01)95429-2
Monnereau C., Gomez J., Blart E., Odobel F., Wallin S., Fallberg A., Hammarström L. Inorg. Chem. 2005, 44, 4806-4817. https://doi.org/10.1021/ic048573q
Sonogashira K. J. Organomet. Chem. 2002, 653, 46-49. https://doi.org/10.1016/S0022-328X(02)01158-0
Vyalba F.Y., Ivantsova A.V., Zhdanova K.A., Usachev M.N., Gradova M.A., Bragina N.A. Mendeleev Commun. 2022, 32, 675-677. https://doi.org/10.1016/j.mencom.2022.09.036
Zhdanova K.A., Ivantsova A.V., Vyalba F.Y., Usachev M.N., Gradova M.A., Gradov O.V., Karpechenko N.Y., Bragina N.A. Pharmaceutics 2023, 15, 269. https://doi.org/10.3390/pharmaceutics15010269
Schmittel M., Samanta S.K. J. Org. Chem. 2010, 75, 5911-5919. https://doi.org/10.1021/jo101169f
Samanta D., Paul I., Schmittel M. Chem. Commun. 2017, 53, 9709-9712. https://doi.org/10.1039/C7CC05235A
Verma P., Rahimi F.A., Samanta D., Kundu A., Dasgupta J., Maji T.K. Angew. Chem. Int. Ed. 2022, 61, e202116094. https://doi.org/10.1002/anie.202116094
Moura N.M.M., Castro K.A.D.F., Biazzotto J.C., Prandini J.A., Lodeiro C., Faustino M.A.F., Simões M.M.Q., da Silva R.S., Neves M.G.P.M.S. Dyes Pigm. 2022, 205, 110501. https://doi.org/10.1016/j.dyepig.2022.110501
Nayak A., Hu K., Roy S., Brennaman M.K., Shan B., Meyer G.J., Meyer T.J. J. Phys. Chem. C 2018, 122, 13455-13461. https://doi.org/10.1021/acs.jpcc.7b11711
Norsten T.B., Chichak K., Branda N.R. Tetrahedron 2002, 58, 639-651. https://doi.org/10.1016/S0040-4020(01)01096-1
Oh J.B., Nah M.‐K., Kim Y.H., Kang M.S., Ka J.‐W., Kim H.K. Adv. Funct. Mater. 2007, 17, 413-424. https://doi.org/10.1002/adfm.200600451
Oh J.B., Kim Y.H., Nah M.K., Kim H.K. J. Lumin. 2005, 111, 255-264. https://doi.org/10.1016/j.jlumin.2004.10.006
Yamaguchi S., Shinokubo H., Osuka A. J. Am. Chem. Soc. 2010, 132, 9992-9993. https://doi.org/10.1021/ja104842h
Bonacin J.A., Katic V., Toledo K.C.F., Toma H.E. Inorg. Chim. Acta 2015, 437, 127-132. https://doi.org/10.1016/j.ica.2015.07.048
Kumar P.P., Premaladha G., Maiya B.G. Chem. Commun. 2005, 3823. https://doi.org/10.1039/b504029a
Kandrashkin Y.E., Poddutoori P.K., van der Est A. Appl. Magn. Reson. 2006, 30, 605-618. https://doi.org/10.1007/BF03166221
Poddutoori P.K., Lim G.N., Pilkington M., D'Souza F., van der Est A. Inorg. Chem. 2016, 55, 11383-11395. https://doi.org/10.1021/acs.inorgchem.6b01924