Возможности термолинзовой спектрометрии в анализе пара-хлорфенокси замещенного фталоцианина лютеция
Аннотация
В работе проводилась оценка протекающих под действием лазерного излучения физико-химических изменений пара-хлорфеноксизамещенного фталоцианината лютеция в хлороформе и тетрагидрофуране. Для этого применялась термолинзовая спектрометрия, которая совмещает молекулярную оптическую спектроскопию и теплофизический анализ. Обнаружено значительное изменение температуропроводности фталоцианина, что может быть следствием специфической сольватации макромолекул фталоцианина на уровне 10 нмоль/л. Изменение термолинзового сигнала в течение 12–16 часов указывает на фотоиндуцируемую активность фталоцианина.
Литература
Cho K.T., Trukhina O., Roldán‐Carmona C., Ince M., Gratia P., Grancini G., Gao P., Marszalek T., Pisula W., Reddy P.Y., Torres T., Nazeeruddin M.K. Adv. Energy Mater. 2016, 7, 1601733. https://doi.org/10.1002/aenm.201601733
Urbani M., Ragoussi M.-E., Nazeeruddin M.K.,Torres T. Coord. Chem. Rev. 2019, 381, 1-64. https://doi.org/10.1016/j.ccr.2018.10.007
de Saja J.A., Rodriguez-Mendez M.L. Adv. Colloid Interface Sci. 2005, 116, 1-11. https://doi.org/10.1016/j.cis.2005.03.004
Nikoloudakis E., Lopez-Duarte I., Charalambidis G., Ladomenou K., Ince M., Coutsolelos A.G. Chem. Soc. Rev. 2022, 51, 6965-7045. https://doi.org/10.1039/D2CS00183G
Sanarova E., Meerovich I., Lantsova A., Kotova E., Shprakh Z., Polozkova A., Orlova O., Meerovich G., Borisova L., Lukyanets E., Smirnova Z., Oborotova N., Baryshnikov A. J. Drug Deliv. Sci. Tec. 2014, 24, 315-319. https://doi.org/10.1016/S1773-2247(14)50068-8
Li X., Peng X.H., Zheng B.D., Tang J., Zhao Y., Zheng B.Y., Ke M.R., Huang J.D. Chem. Sci. 2018, 9, 2098-2104. https://doi.org/10.1039/C7SC05115H
Wang W., Wang J., Hong G., Mao L., Zhu N., Liu T. Biomacromolecules 2021, 22, 4284-4294. https://doi.org/10.1021/acs.biomac.1c00855
Li D., Cai S., Wang P., Cheng H., Cheng B., Zhang Y., Liu G. Adv. Health. Mater. 2023, 12, e2300263. https://doi.org/10.1002/adhm.202300263
Abid S., Nguyen C., Daurat M., Durand D., Jamoussi B., Blanchard-Desce M., Gary-Bobo M., Mongin O., Paul-Roth C.O., Paul F. Dyes Pigm. 2022, 197, 109840. https://doi.org/10.1016/j.dyepig.2021.109840
Huber V., Sengupta S., Würthner F. Chemistry (Weinheim an der Bergstrasse, Germany) 2008, 14, 7791-7807. https://doi.org/10.1002/chem.200800764
Isago H. "Prototypical" Optical Absorption Spectra of Phthalocyanines and Their Theoretical Background. In: Optical Spectra of Phthalocyanines and Related Compounds (Isago H., Ed.), Springer Japan: Tokyo, 2015. pp 21-40. https://doi.org/10.1007/978-4-431-55102-7_2
Bialkowski S.E., Astrath N.G.C., Proskurnin M.A. Photothermal Spectroscopy Methods. Wiley: 2019. 512 p. https://doi.org/10.1002/9781119279105
Khabibullin V.R., Usoltseva L.O., Galkina P.A., Galimova V.R., Volkov D.S., Mikheev I.V., Proskurnin M.A. Physchem 2023, 3, 156-197. https://doi.org/10.3390/physchem3010012
Proskurnin M.A., Khabibullin V.R., Usoltseva L.O., Vyrko E.A., Mikheev I.V., Volkov D.S. Physics-Uspekhi 2022, 65, (3), 270-312. https://doi.org/10.3367/UFNe.2021.05.038976
Fomina P.S., Proskurnin M.A. J. Appl. Phys. 2022, 132, 040701. https://doi.org/10.1063/5.0088817
Mazza G., Posnicek T., Wagner L.-M., Brandl M. Procedia Engineer. 2016, 168, 602-605. https://doi.org/10.1016/j.proeng.2016.11.224
Savi E.L., Malacarne L.C., Baesso M.L., Pintro P.T.M., Croge C., Shen J., Astrath N.G.C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 145, 125-129. https://doi.org/10.1016/j.saa.2015.02.106
Herculano L.S., Malacarne L.C., Zanuto V.S., Lukasievicz G.V., Capeloto O.A., Astrath N.G. J. Phys. Chem. B 2013, 117, 1932-1937. https://doi.org/10.1021/jp3119296
Estupiñán-López C., Dominguez C.T., Filho P.E.C., Santos B.S., Fontes A., de Araujo R.E. J. Lumin. 2016, 174, 17-21. https://doi.org/10.1016/j.jlumin.2015.12.052
Martins V.M., Messias D.N., Doualan J.L., Braud A., Camy P., Dantas N.O., Catunda T., Pilla V., Andrade A.A., Moncorgé R. J. Lumin. 2015, 162, 104-107. https://doi.org/10.1016/j.jlumin.2015.02.013
Yamauchi M., Mawatari K., Hibara A., Tokeshi M., Kitamori T. Anal. Chem. 2006, 78, 2646-2650. https://doi.org/10.1021/ac0519920
Anjos V., Andrade A.A., Bell M.J.V. Appl. Surf. Sci. 2008, 255, 698-700. https://doi.org/10.1016/j.apsusc.2008.07.011
Proskurnin M.A.,Volkov D.S., Ryndina E.S., Nedosekin D.A., Zharov V.P. ALT Proceedings 2012, 1. https://doi.org/10.12684/alt.1.82
Mazza G., Posnicek T., Wagner L.-M., Ettenauer J., Zuser K., Gusenbauer M., Brandl M. Sens. Actuators, B 2017, 249, 731-737. https://doi.org/10.1016/j.snb.2017.04.091
Soto C., Saavedra R., Toral M.I., Nacaratte F., Poza C. Microchem. J. 2016, 129, 36-40. https://doi.org/10.1016/j.microc.2016.06.004
Simon J., Anugop B., Nampoori V.P.N., Kailasnath M. Opt. Laser Technol. 2021, 139, 106954. https://doi.org/10.1016/j.optlastec.2021.106954
Mathew R.M., Zachariah E.S., Jose J., Thomas T., John J., Titus T., Unni N.G., Mathew S., Mujeeb A., Thomas V. Appl. Phys. A 2020, 126, 828. https://doi.org/10.1007/s00339-020-04014-2
Francis F., Anila E.I., Joseph S.A. Optik 2020, 219, 165210. https://doi.org/10.1016/j.ijleo.2020.165210
Luna-Sánchez J.L., Jiménez-Pérez J.L., Carbajal-Valdez R., Lopez-Gamboa G., Pérez-González M., Correa-Pacheco Z.N. Thermochim. Acta 2019, 678, 178314. https://doi.org/10.1016/j.tca.2019.178314
Martelanc M., Ziberna L., Passamonti S., Franko M. Talanta 2016, 154, 92-98. https://doi.org/10.1016/j.talanta.2016.03.053
Deus W. B.,Ventura M.,Silva J. R.,Andrade L. H. C.,Catunda T.,Lima S. M. Fuel 2019, 253, 1090-1096. https://doi.org/10.1016/j.fuel.2019.05.097
Astrath N.G., Astrath F.B., Shen J., Zhou J., Michaelian K.H., Fairbridge C., Malacarne L.C., Pedreira P.R., Medina A.N., Baesso M.L. Opt. Lett. 2009, 34, 3460-3462. https://doi.org/10.1364/OL.34.003460
Savi E.L., Herculano L.S., Lukasievicz G.V.B., Regatieri H.R., Torquato A.S., Malacarne L.C., Astrath N.G.C. Fuel 2018, 217, 404-408. https://doi.org/10.1016/j.fuel.2017.12.104
Ventura M., Deus W.B., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Fuel 2018, 212, 309-314. https://doi.org/10.1016/j.fuel.2017.10.069
Proskurnin M.A., Chernysh V.V., Pakhomova S.V., Kononets M.Y., Sheshenev A.A. Talanta 2002, 57, 831-839. https://doi.org/10.1016/S0039-9140(02)00128-5
Khabibullin V.R., Ratova D.V., Stolbov D.N., Mikheev I.V., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 2126. https://doi.org/10.3390/nano13142126
Shen J., Lowe R.D., Snook R.D. Chem. Phys. 1992, 165, 385-396. https://doi.org/10.1016/0301-0104(92)87053-C
Khabibullin V.R., Usoltseva L.O., Mikheev I.V., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 1006. https://doi.org/10.3390/nano13061006
Kuzmina E.A., Dubinina T.V., Borisova N.E., Tomilova L.G. Macroheterocycles 2017, 10, 520-525. https://doi.org/10.6060/mhc171253d
Kuzmina E.A., Dubinina T.V., Tomilova L.G. New J. Chem. 2019, 43, 9314-9327. https://doi.org/10.1039/C9NJ01755K
Yahya M., Nural Y., Seferoğlu Z. Dyes Pigm. 2022, 198, 109960. https://doi.org/10.1016/j.dyepig.2021.109960
Kuzmina E.A., Dubinina T.V., Vasilevsky P.N., Saveliev M.S., Gerasimenko A.Y., Borisova N.E., Tomilova L.G. Dyes Pigm. 2021, 185, 108871. https://doi.org/10.1016/j.dyepig.2020.108871
Timoumi A., Dastan D., Jamoussi B., Essalah K., Alsalmi O.H., Bouguila N., Abassi H., Chakroun R., Shi Z., Ţălu Ş. Molecules 2022, 27, 6151. https://doi.org/10.3390/molecules27196151
Zouaghi M.O., Arfaoui Y., Champagne B. Opt. Mater. 2021, 120, 111315. https://doi.org/10.1016/j.optmat.2021.111315
Brennetot R., Georges J. Spectrochim. Acta, A 1999, 55, 381-395. https://doi.org/10.1016/S1386-1425(98)00199-1
Escalona R. Opt. Commun. 2008, 281, 388-394. https://doi.org/10.1016/j.optcom.2007.09.048
Dovichi N.J., Bialkowski S.E. C R C Crit. Rev. Anal. Chem. 1987, 17, 357-423. https://doi.org/10.1080/10408348708542799
Netzahual-Lopantzi Á., Sánchez-Ramírez J.F., Jiménez-Pérez J.L., Cornejo-Monroy D., López-Gamboa G., Correa-Pacheco Z.N. Appl. Phys. A 2019, 125, 588. https://doi.org/10.1007/s00339-019-2891-3
Augustine A.K., Mathew S., Girijavallabhan C.P., Radhakrishnan P., Nampoori V.P.N., Kailasnath M. J. Opt. 2014, 44, 85-91. https://doi.org/10.1007/s12596-014-0213-x
Oliveira G.M., Zanuto V.S., Flizikowski G.A.S., Kimura N.M., Sampaio A.R., Novatski A., Baesso M.L., Malacarne L.C., Astrath N.G.C. J. Mol. Liq. 2020, 312, 113381. https://doi.org/10.1016/j.molliq.2020.113381
Georges J. Spectrochim. Acta A 2008, 69, 1063-1072. https://doi.org/10.1016/j.saa.2007.07.062
Pedreira P.R.B., Hirsch L.R., Pereira J.R.D., Medina A.N., Bento A.C., Baesso M.L., Rollemberg M.C., Franko M., Shen J. J. Appl. Phys.s 2006, 100, 044906. https://doi.org/10.1063/1.2245201
Jiménez Pérez J.L., Sanchez Ramírez J.F., Cruz Orea A., Gutiérrez Fuentes R., Cornejo-Monroy D., López-Muñoz G.A. J. Nano Res. 2010, 9, 55-60. https://doi.org/10.4028/www.scientific.net/JNanoR.9.55
Usoltseva L.O., Volkov D.S., Avramenko N.V., Korobov M.V., Proskurnin M.A. Nanosystems: Physics, Chemistry, Mathematics 2018, 9, 17-20. https://doi.org/10.17586/2220-8054-2018-9-1-17-20
Fischer M., Georges J. Spectrochim. Acta, A 1997, 53, 1419-1430. https://doi.org/10.1016/S0584-8539(97)00027-5
Lopez-Bueno C., Suarez-Rodriguez M., Amigo A., Rivadulla F. Phys. Chem. Chem. Phys. 2020, 22, 21094-21098. https://doi.org/10.1039/D0CP03778H
Kawazumi H., Kaieda T., Inoue T., Ogawa T. Chem. Phys. Lett. 1998, 282, 159-163. https://doi.org/10.1016/S0009-2614(97)01239-6
Arnaud N.,Georges J. Spectrochim. Acta, A 2004, 60, 1817-1823. https://doi.org/10.1016/j.saa.2003.09.019
Arnaud N.,Georges J. Spectrochim. Acta, A 2001, 57, 1295-1301. https://doi.org/10.1016/S1386-1425(00)00465-0
Zhirkov A.A., Bendrysheva S.N., Proskurnin M.A., Ragozina N.Y., Zuev B.K. Mosc. Univer. Chem. Bull. 2009, 64, 87-92. https://doi.org/10.3103/S0027131409020047
Georges J.,Paris T. Anal. Chim. Acta 1999, 386, 287-296. https://doi.org/10.1016/S0003-2670(99)00046-X
Arnaud N.,Georges J. Spectrochim. Acta, A 2001, 57, 1085-1092. https://doi.org/10.1016/S1386-1425(00)00425-X
Franko M., Tran C.D. J. Phys. Chem. 2002, 95, 6688-6696. https://doi.org/10.1021/j100170a057
Colcombe S.M., Lowe R.D., Snook R.D. Anal. Chim. Acta 1997, 356, 277-288. https://doi.org/10.1016/S0003-2670(97)00475-3
Zhirkov A.A., Nikiforov A.A., Tsar'kov D.S., Volkov D.S., Proskurnin M.A., Zuev B.K. J. Analyt. Chem. 2012, 67, 290-296. https://doi.org/10.1134/S1061934812010212
Abbasgholi-Na B., Nokhbeh S.R., Aldaghri O.A., Ibnaouf K.H., Madkhali N., Cabrera H. Polymers 2022, 14, 2707. https://doi.org/10.3390/polym14132707
Ruzzi V., Buzzaccaro S., Piazza R. Polymers 2023, 15, 1283. https://doi.org/10.3390/polym15051283
Colcombe S.M., Snook R.D. Analyt. Chim. Acta 1999, 390, 155-161. https://doi.org/10.1016/S0003-2670(99)00163-4
Khabibullin V.R., Franko M., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 430. https://doi.org/10.3390/nano13030430
Rodriguez L.G., Iza P., Paz J.L. J. Nonlinear Opt. Phys. Mater. 2016, 25, 1650022. https://doi.org/10.1142/S0218863516500223
Mohebbifar M.R. Optik 2021, 242, 166902. https://doi.org/10.1016/j.ijleo.2021.166902
Leulescu M., Rotaru A., Pălărie I., Moanţă A., Cioateră N., Popescu M., Morîntale E., Bubulică M.V., Florian G., Hărăbor A., Rotaru P. J. Therm. Anal. Calorim. 2018, 134, 209-231. https://doi.org/10.1007/s10973-018-7663-3
Dubinina T.V., Paramonova K.V., Trashin S.A., Borisova N.E., Tomilova L.G., Zefirov N.S. Dalton Trans. 2014, 43, 2799-2809. https://doi.org/10.1039/C3DT52726C
Rauf M.A., Hisaindee S., Graham J.P., Nawaz M. J. Mol. Liq. 2012, 168, 102-109. https://doi.org/10.1016/j.molliq.2012.01.008
Lebedeva N.S., Petrova O.V., Vyugin A.I., Maizlish V.E., Shaposhnikov G.P. Thermochim. Acta 2004, 417, 127-132. https://doi.org/10.1016/j.tca.2004.01.023
Slota R., Dyrda G. Inorg. Chem. 2003, 42, 5743-5750. https://doi.org/10.1021/ic0260217
Voronina A.A., Filippova A.A., Znoiko S.A., Vashurin A.S., Maizlish V.E. Russ. J. Inorg. Chem. 2015, 60, 1407-1414. https://doi.org/10.1134/S0036023615110236
Vashurin A., Filippova A., Znoyko S., Voronina A., Lefedova O., Kuzmin I., Maizlish V., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 983-996. https://doi.org/10.1142/S1088424615500753
Kurian A., Bindhu C.V., Nampoori V.P.N. J. Opt. 2015, 37, 43-50. https://doi.org/10.1007/BF03354836