Possibilities of Thermal Lens Spectrometry in the Analysis of p-Chlorophenoxy Substituted Lutetium Phthalocyanine

  • Vladislav R. Khabibullin
  • Elena A. Gorbunova
  • Tatiana Valentinovna Dubinina Lomonosov MSU
  • Mikhail A. Proskurnin
Keywords: Phthalocyanine, thermal lens spectrometry, aggregation, photodegradation, UV-Vis spectroscopy

Abstract

The work assessed the physicochemical changes in p-chlorophenoxy-substituted lutetium phthalocyanine in chloroform and tetrahydrofuran under the influence of laser radiation. For this purpose, thermal lens spectrometry was used, as combining optical molecular spectroscopy and thermophysical analysis. A significant change in the thermal diffusivity of the phthalocyanine was detected, which is probably a consequence of the specific solvation of phthalocyanine macromolecules at a level of 10 nmol/L. A change in the thermal lens signal over 12–16 h indicates photoinduced activity of the phthalocyanine.

References

Cho K.T., Trukhina O., Roldán‐Carmona C., Ince M., Gratia P., Grancini G., Gao P., Marszalek T., Pisula W., Reddy P.Y., Torres T., Nazeeruddin M.K. Adv. Energy Mater. 2016, 7, 1601733. https://doi.org/10.1002/aenm.201601733

Urbani M., Ragoussi M.-E., Nazeeruddin M.K.,Torres T. Coord. Chem. Rev. 2019, 381, 1-64. https://doi.org/10.1016/j.ccr.2018.10.007

de Saja J.A., Rodriguez-Mendez M.L. Adv. Colloid Interface Sci. 2005, 116, 1-11. https://doi.org/10.1016/j.cis.2005.03.004

Nikoloudakis E., Lopez-Duarte I., Charalambidis G., Ladomenou K., Ince M., Coutsolelos A.G. Chem. Soc. Rev. 2022, 51, 6965-7045. https://doi.org/10.1039/D2CS00183G

Sanarova E., Meerovich I., Lantsova A., Kotova E., Shprakh Z., Polozkova A., Orlova O., Meerovich G., Borisova L., Lukyanets E., Smirnova Z., Oborotova N., Baryshnikov A. J. Drug Deliv. Sci. Tec. 2014, 24, 315-319. https://doi.org/10.1016/S1773-2247(14)50068-8

Li X., Peng X.H., Zheng B.D., Tang J., Zhao Y., Zheng B.Y., Ke M.R., Huang J.D. Chem. Sci. 2018, 9, 2098-2104. https://doi.org/10.1039/C7SC05115H

Wang W., Wang J., Hong G., Mao L., Zhu N., Liu T. Biomacromolecules 2021, 22, 4284-4294. https://doi.org/10.1021/acs.biomac.1c00855

Li D., Cai S., Wang P., Cheng H., Cheng B., Zhang Y., Liu G. Adv. Health. Mater. 2023, 12, e2300263. https://doi.org/10.1002/adhm.202300263

Abid S., Nguyen C., Daurat M., Durand D., Jamoussi B., Blanchard-Desce M., Gary-Bobo M., Mongin O., Paul-Roth C.O., Paul F. Dyes Pigm. 2022, 197, 109840. https://doi.org/10.1016/j.dyepig.2021.109840

Huber V., Sengupta S., Würthner F. Chemistry (Weinheim an der Bergstrasse, Germany) 2008, 14, 7791-7807. https://doi.org/10.1002/chem.200800764

Isago H. "Prototypical" Optical Absorption Spectra of Phthalocyanines and Their Theoretical Background. In: Optical Spectra of Phthalocyanines and Related Compounds (Isago H., Ed.), Springer Japan: Tokyo, 2015. pp 21-40. https://doi.org/10.1007/978-4-431-55102-7_2

Bialkowski S.E., Astrath N.G.C., Proskurnin M.A. Photothermal Spectroscopy Methods. Wiley: 2019. 512 p. https://doi.org/10.1002/9781119279105

Khabibullin V.R., Usoltseva L.O., Galkina P.A., Galimova V.R., Volkov D.S., Mikheev I.V., Proskurnin M.A. Physchem 2023, 3, 156-197. https://doi.org/10.3390/physchem3010012

Proskurnin M.A., Khabibullin V.R., Usoltseva L.O., Vyrko E.A., Mikheev I.V., Volkov D.S. Physics-Uspekhi 2022, 65, (3), 270-312. https://doi.org/10.3367/UFNe.2021.05.038976

Fomina P.S., Proskurnin M.A. J. Appl. Phys. 2022, 132, 040701. https://doi.org/10.1063/5.0088817

Mazza G., Posnicek T., Wagner L.-M., Brandl M. Procedia Engineer. 2016, 168, 602-605. https://doi.org/10.1016/j.proeng.2016.11.224

Savi E.L., Malacarne L.C., Baesso M.L., Pintro P.T.M., Croge C., Shen J., Astrath N.G.C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 145, 125-129. https://doi.org/10.1016/j.saa.2015.02.106

Herculano L.S., Malacarne L.C., Zanuto V.S., Lukasievicz G.V., Capeloto O.A., Astrath N.G. J. Phys. Chem. B 2013, 117, 1932-1937. https://doi.org/10.1021/jp3119296

Estupiñán-López C., Dominguez C.T., Filho P.E.C., Santos B.S., Fontes A., de Araujo R.E. J. Lumin. 2016, 174, 17-21. https://doi.org/10.1016/j.jlumin.2015.12.052

Martins V.M., Messias D.N., Doualan J.L., Braud A., Camy P., Dantas N.O., Catunda T., Pilla V., Andrade A.A., Moncorgé R. J. Lumin. 2015, 162, 104-107. https://doi.org/10.1016/j.jlumin.2015.02.013

Yamauchi M., Mawatari K., Hibara A., Tokeshi M., Kitamori T. Anal. Chem. 2006, 78, 2646-2650. https://doi.org/10.1021/ac0519920

Anjos V., Andrade A.A., Bell M.J.V. Appl. Surf. Sci. 2008, 255, 698-700. https://doi.org/10.1016/j.apsusc.2008.07.011

Proskurnin M.A.,Volkov D.S., Ryndina E.S., Nedosekin D.A., Zharov V.P. ALT Proceedings 2012, 1. https://doi.org/10.12684/alt.1.82

Mazza G., Posnicek T., Wagner L.-M., Ettenauer J., Zuser K., Gusenbauer M., Brandl M. Sens. Actuators, B 2017, 249, 731-737. https://doi.org/10.1016/j.snb.2017.04.091

Soto C., Saavedra R., Toral M.I., Nacaratte F., Poza C. Microchem. J. 2016, 129, 36-40. https://doi.org/10.1016/j.microc.2016.06.004

Simon J., Anugop B., Nampoori V.P.N., Kailasnath M. Opt. Laser Technol. 2021, 139, 106954. https://doi.org/10.1016/j.optlastec.2021.106954

Mathew R.M., Zachariah E.S., Jose J., Thomas T., John J., Titus T., Unni N.G., Mathew S., Mujeeb A., Thomas V. Appl. Phys. A 2020, 126, 828. https://doi.org/10.1007/s00339-020-04014-2

Francis F., Anila E.I., Joseph S.A. Optik 2020, 219, 165210. https://doi.org/10.1016/j.ijleo.2020.165210

Luna-Sánchez J.L., Jiménez-Pérez J.L., Carbajal-Valdez R., Lopez-Gamboa G., Pérez-González M., Correa-Pacheco Z.N. Thermochim. Acta 2019, 678, 178314. https://doi.org/10.1016/j.tca.2019.178314

Martelanc M., Ziberna L., Passamonti S., Franko M. Talanta 2016, 154, 92-98. https://doi.org/10.1016/j.talanta.2016.03.053

Deus W. B.,Ventura M.,Silva J. R.,Andrade L. H. C.,Catunda T.,Lima S. M. Fuel 2019, 253, 1090-1096. https://doi.org/10.1016/j.fuel.2019.05.097

Astrath N.G., Astrath F.B., Shen J., Zhou J., Michaelian K.H., Fairbridge C., Malacarne L.C., Pedreira P.R., Medina A.N., Baesso M.L. Opt. Lett. 2009, 34, 3460-3462. https://doi.org/10.1364/OL.34.003460

Savi E.L., Herculano L.S., Lukasievicz G.V.B., Regatieri H.R., Torquato A.S., Malacarne L.C., Astrath N.G.C. Fuel 2018, 217, 404-408. https://doi.org/10.1016/j.fuel.2017.12.104

Ventura M., Deus W.B., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Fuel 2018, 212, 309-314. https://doi.org/10.1016/j.fuel.2017.10.069

Proskurnin M.A., Chernysh V.V., Pakhomova S.V., Kononets M.Y., Sheshenev A.A. Talanta 2002, 57, 831-839. https://doi.org/10.1016/S0039-9140(02)00128-5

Khabibullin V.R., Ratova D.V., Stolbov D.N., Mikheev I.V., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 2126. https://doi.org/10.3390/nano13142126

Shen J., Lowe R.D., Snook R.D. Chem. Phys. 1992, 165, 385-396. https://doi.org/10.1016/0301-0104(92)87053-C

Khabibullin V.R., Usoltseva L.O., Mikheev I.V., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 1006. https://doi.org/10.3390/nano13061006

Kuzmina E.A., Dubinina T.V., Borisova N.E., Tomilova L.G. Macroheterocycles 2017, 10, 520-525. https://doi.org/10.6060/mhc171253d

Kuzmina E.A., Dubinina T.V., Tomilova L.G. New J. Chem. 2019, 43, 9314-9327. https://doi.org/10.1039/C9NJ01755K

Yahya M., Nural Y., Seferoğlu Z. Dyes Pigm. 2022, 198, 109960. https://doi.org/10.1016/j.dyepig.2021.109960

Kuzmina E.A., Dubinina T.V., Vasilevsky P.N., Saveliev M.S., Gerasimenko A.Y., Borisova N.E., Tomilova L.G. Dyes Pigm. 2021, 185, 108871. https://doi.org/10.1016/j.dyepig.2020.108871

Timoumi A., Dastan D., Jamoussi B., Essalah K., Alsalmi O.H., Bouguila N., Abassi H., Chakroun R., Shi Z., Ţălu Ş. Molecules 2022, 27, 6151. https://doi.org/10.3390/molecules27196151

Zouaghi M.O., Arfaoui Y., Champagne B. Opt. Mater. 2021, 120, 111315. https://doi.org/10.1016/j.optmat.2021.111315

Brennetot R., Georges J. Spectrochim. Acta, A 1999, 55, 381-395. https://doi.org/10.1016/S1386-1425(98)00199-1

Escalona R. Opt. Commun. 2008, 281, 388-394. https://doi.org/10.1016/j.optcom.2007.09.048

Dovichi N.J., Bialkowski S.E. C R C Crit. Rev. Anal. Chem. 1987, 17, 357-423. https://doi.org/10.1080/10408348708542799

Netzahual-Lopantzi Á., Sánchez-Ramírez J.F., Jiménez-Pérez J.L., Cornejo-Monroy D., López-Gamboa G., Correa-Pacheco Z.N. Appl. Phys. A 2019, 125, 588. https://doi.org/10.1007/s00339-019-2891-3

Augustine A.K., Mathew S., Girijavallabhan C.P., Radhakrishnan P., Nampoori V.P.N., Kailasnath M. J. Opt. 2014, 44, 85-91. https://doi.org/10.1007/s12596-014-0213-x

Oliveira G.M., Zanuto V.S., Flizikowski G.A.S., Kimura N.M., Sampaio A.R., Novatski A., Baesso M.L., Malacarne L.C., Astrath N.G.C. J. Mol. Liq. 2020, 312, 113381. https://doi.org/10.1016/j.molliq.2020.113381

Georges J. Spectrochim. Acta A 2008, 69, 1063-1072. https://doi.org/10.1016/j.saa.2007.07.062

Pedreira P.R.B., Hirsch L.R., Pereira J.R.D., Medina A.N., Bento A.C., Baesso M.L., Rollemberg M.C., Franko M., Shen J. J. Appl. Phys.s 2006, 100, 044906. https://doi.org/10.1063/1.2245201

Jiménez Pérez J.L., Sanchez Ramírez J.F., Cruz Orea A., Gutiérrez Fuentes R., Cornejo-Monroy D., López-Muñoz G.A. J. Nano Res. 2010, 9, 55-60. https://doi.org/10.4028/www.scientific.net/JNanoR.9.55

Usoltseva L.O., Volkov D.S., Avramenko N.V., Korobov M.V., Proskurnin M.A. Nanosystems: Physics, Chemistry, Mathematics 2018, 9, 17-20. https://doi.org/10.17586/2220-8054-2018-9-1-17-20

Fischer M., Georges J. Spectrochim. Acta, A 1997, 53, 1419-1430. https://doi.org/10.1016/S0584-8539(97)00027-5

Lopez-Bueno C., Suarez-Rodriguez M., Amigo A., Rivadulla F. Phys. Chem. Chem. Phys. 2020, 22, 21094-21098. https://doi.org/10.1039/D0CP03778H

Kawazumi H., Kaieda T., Inoue T., Ogawa T. Chem. Phys. Lett. 1998, 282, 159-163. https://doi.org/10.1016/S0009-2614(97)01239-6

Arnaud N.,Georges J. Spectrochim. Acta, A 2004, 60, 1817-1823. https://doi.org/10.1016/j.saa.2003.09.019

Arnaud N.,Georges J. Spectrochim. Acta, A 2001, 57, 1295-1301. https://doi.org/10.1016/S1386-1425(00)00465-0

Zhirkov A.A., Bendrysheva S.N., Proskurnin M.A., Ragozina N.Y., Zuev B.K. Mosc. Univer. Chem. Bull. 2009, 64, 87-92. https://doi.org/10.3103/S0027131409020047

Georges J.,Paris T. Anal. Chim. Acta 1999, 386, 287-296. https://doi.org/10.1016/S0003-2670(99)00046-X

Arnaud N.,Georges J. Spectrochim. Acta, A 2001, 57, 1085-1092. https://doi.org/10.1016/S1386-1425(00)00425-X

Franko M., Tran C.D. J. Phys. Chem. 2002, 95, 6688-6696. https://doi.org/10.1021/j100170a057

Colcombe S.M., Lowe R.D., Snook R.D. Anal. Chim. Acta 1997, 356, 277-288. https://doi.org/10.1016/S0003-2670(97)00475-3

Zhirkov A.A., Nikiforov A.A., Tsar'kov D.S., Volkov D.S., Proskurnin M.A., Zuev B.K. J. Analyt. Chem. 2012, 67, 290-296. https://doi.org/10.1134/S1061934812010212

Abbasgholi-Na B., Nokhbeh S.R., Aldaghri O.A., Ibnaouf K.H., Madkhali N., Cabrera H. Polymers 2022, 14, 2707. https://doi.org/10.3390/polym14132707

Ruzzi V., Buzzaccaro S., Piazza R. Polymers 2023, 15, 1283. https://doi.org/10.3390/polym15051283

Colcombe S.M., Snook R.D. Analyt. Chim. Acta 1999, 390, 155-161. https://doi.org/10.1016/S0003-2670(99)00163-4

Khabibullin V.R., Franko M., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 430. https://doi.org/10.3390/nano13030430

Rodriguez L.G., Iza P., Paz J.L. J. Nonlinear Opt. Phys. Mater. 2016, 25, 1650022. https://doi.org/10.1142/S0218863516500223

Mohebbifar M.R. Optik 2021, 242, 166902. https://doi.org/10.1016/j.ijleo.2021.166902

Leulescu M., Rotaru A., Pălărie I., Moanţă A., Cioateră N., Popescu M., Morîntale E., Bubulică M.V., Florian G., Hărăbor A., Rotaru P. J. Therm. Anal. Calorim. 2018, 134, 209-231. https://doi.org/10.1007/s10973-018-7663-3

Dubinina T.V., Paramonova K.V., Trashin S.A., Borisova N.E., Tomilova L.G., Zefirov N.S. Dalton Trans. 2014, 43, 2799-2809. https://doi.org/10.1039/C3DT52726C

Rauf M.A., Hisaindee S., Graham J.P., Nawaz M. J. Mol. Liq. 2012, 168, 102-109. https://doi.org/10.1016/j.molliq.2012.01.008

Lebedeva N.S., Petrova O.V., Vyugin A.I., Maizlish V.E., Shaposhnikov G.P. Thermochim. Acta 2004, 417, 127-132. https://doi.org/10.1016/j.tca.2004.01.023

Slota R., Dyrda G. Inorg. Chem. 2003, 42, 5743-5750. https://doi.org/10.1021/ic0260217

Voronina A.A., Filippova A.A., Znoiko S.A., Vashurin A.S., Maizlish V.E. Russ. J. Inorg. Chem. 2015, 60, 1407-1414. https://doi.org/10.1134/S0036023615110236

Vashurin A., Filippova A., Znoyko S., Voronina A., Lefedova O., Kuzmin I., Maizlish V., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 983-996. https://doi.org/10.1142/S1088424615500753

Kurian A., Bindhu C.V., Nampoori V.P.N. J. Opt. 2015, 37, 43-50. https://doi.org/10.1007/BF03354836

Published
2024-10-17
How to Cite
Khabibullin, V., Gorbunova, E., Dubinina, T., & Proskurnin, M. (2024). Possibilities of Thermal Lens Spectrometry in the Analysis of p-Chlorophenoxy Substituted Lutetium Phthalocyanine. Macroheterocycles, 17(3), 205-212. https://doi.org/10.6060/mhc245880d