Possibilities of Thermal Lens Spectrometry in the Analysis of p-Chlorophenoxy Substituted Lutetium Phthalocyanine
Abstract
The work assessed the physicochemical changes in p-chlorophenoxy-substituted lutetium phthalocyanine in chloroform and tetrahydrofuran under the influence of laser radiation. For this purpose, thermal lens spectrometry was used, as combining optical molecular spectroscopy and thermophysical analysis. A significant change in the thermal diffusivity of the phthalocyanine was detected, which is probably a consequence of the specific solvation of phthalocyanine macromolecules at a level of 10 nmol/L. A change in the thermal lens signal over 12–16 h indicates photoinduced activity of the phthalocyanine.
References
Cho K.T., Trukhina O., Roldán‐Carmona C., Ince M., Gratia P., Grancini G., Gao P., Marszalek T., Pisula W., Reddy P.Y., Torres T., Nazeeruddin M.K. Adv. Energy Mater. 2016, 7, 1601733. https://doi.org/10.1002/aenm.201601733
Urbani M., Ragoussi M.-E., Nazeeruddin M.K.,Torres T. Coord. Chem. Rev. 2019, 381, 1-64. https://doi.org/10.1016/j.ccr.2018.10.007
de Saja J.A., Rodriguez-Mendez M.L. Adv. Colloid Interface Sci. 2005, 116, 1-11. https://doi.org/10.1016/j.cis.2005.03.004
Nikoloudakis E., Lopez-Duarte I., Charalambidis G., Ladomenou K., Ince M., Coutsolelos A.G. Chem. Soc. Rev. 2022, 51, 6965-7045. https://doi.org/10.1039/D2CS00183G
Sanarova E., Meerovich I., Lantsova A., Kotova E., Shprakh Z., Polozkova A., Orlova O., Meerovich G., Borisova L., Lukyanets E., Smirnova Z., Oborotova N., Baryshnikov A. J. Drug Deliv. Sci. Tec. 2014, 24, 315-319. https://doi.org/10.1016/S1773-2247(14)50068-8
Li X., Peng X.H., Zheng B.D., Tang J., Zhao Y., Zheng B.Y., Ke M.R., Huang J.D. Chem. Sci. 2018, 9, 2098-2104. https://doi.org/10.1039/C7SC05115H
Wang W., Wang J., Hong G., Mao L., Zhu N., Liu T. Biomacromolecules 2021, 22, 4284-4294. https://doi.org/10.1021/acs.biomac.1c00855
Li D., Cai S., Wang P., Cheng H., Cheng B., Zhang Y., Liu G. Adv. Health. Mater. 2023, 12, e2300263. https://doi.org/10.1002/adhm.202300263
Abid S., Nguyen C., Daurat M., Durand D., Jamoussi B., Blanchard-Desce M., Gary-Bobo M., Mongin O., Paul-Roth C.O., Paul F. Dyes Pigm. 2022, 197, 109840. https://doi.org/10.1016/j.dyepig.2021.109840
Huber V., Sengupta S., Würthner F. Chemistry (Weinheim an der Bergstrasse, Germany) 2008, 14, 7791-7807. https://doi.org/10.1002/chem.200800764
Isago H. "Prototypical" Optical Absorption Spectra of Phthalocyanines and Their Theoretical Background. In: Optical Spectra of Phthalocyanines and Related Compounds (Isago H., Ed.), Springer Japan: Tokyo, 2015. pp 21-40. https://doi.org/10.1007/978-4-431-55102-7_2
Bialkowski S.E., Astrath N.G.C., Proskurnin M.A. Photothermal Spectroscopy Methods. Wiley: 2019. 512 p. https://doi.org/10.1002/9781119279105
Khabibullin V.R., Usoltseva L.O., Galkina P.A., Galimova V.R., Volkov D.S., Mikheev I.V., Proskurnin M.A. Physchem 2023, 3, 156-197. https://doi.org/10.3390/physchem3010012
Proskurnin M.A., Khabibullin V.R., Usoltseva L.O., Vyrko E.A., Mikheev I.V., Volkov D.S. Physics-Uspekhi 2022, 65, (3), 270-312. https://doi.org/10.3367/UFNe.2021.05.038976
Fomina P.S., Proskurnin M.A. J. Appl. Phys. 2022, 132, 040701. https://doi.org/10.1063/5.0088817
Mazza G., Posnicek T., Wagner L.-M., Brandl M. Procedia Engineer. 2016, 168, 602-605. https://doi.org/10.1016/j.proeng.2016.11.224
Savi E.L., Malacarne L.C., Baesso M.L., Pintro P.T.M., Croge C., Shen J., Astrath N.G.C. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 145, 125-129. https://doi.org/10.1016/j.saa.2015.02.106
Herculano L.S., Malacarne L.C., Zanuto V.S., Lukasievicz G.V., Capeloto O.A., Astrath N.G. J. Phys. Chem. B 2013, 117, 1932-1937. https://doi.org/10.1021/jp3119296
Estupiñán-López C., Dominguez C.T., Filho P.E.C., Santos B.S., Fontes A., de Araujo R.E. J. Lumin. 2016, 174, 17-21. https://doi.org/10.1016/j.jlumin.2015.12.052
Martins V.M., Messias D.N., Doualan J.L., Braud A., Camy P., Dantas N.O., Catunda T., Pilla V., Andrade A.A., Moncorgé R. J. Lumin. 2015, 162, 104-107. https://doi.org/10.1016/j.jlumin.2015.02.013
Yamauchi M., Mawatari K., Hibara A., Tokeshi M., Kitamori T. Anal. Chem. 2006, 78, 2646-2650. https://doi.org/10.1021/ac0519920
Anjos V., Andrade A.A., Bell M.J.V. Appl. Surf. Sci. 2008, 255, 698-700. https://doi.org/10.1016/j.apsusc.2008.07.011
Proskurnin M.A.,Volkov D.S., Ryndina E.S., Nedosekin D.A., Zharov V.P. ALT Proceedings 2012, 1. https://doi.org/10.12684/alt.1.82
Mazza G., Posnicek T., Wagner L.-M., Ettenauer J., Zuser K., Gusenbauer M., Brandl M. Sens. Actuators, B 2017, 249, 731-737. https://doi.org/10.1016/j.snb.2017.04.091
Soto C., Saavedra R., Toral M.I., Nacaratte F., Poza C. Microchem. J. 2016, 129, 36-40. https://doi.org/10.1016/j.microc.2016.06.004
Simon J., Anugop B., Nampoori V.P.N., Kailasnath M. Opt. Laser Technol. 2021, 139, 106954. https://doi.org/10.1016/j.optlastec.2021.106954
Mathew R.M., Zachariah E.S., Jose J., Thomas T., John J., Titus T., Unni N.G., Mathew S., Mujeeb A., Thomas V. Appl. Phys. A 2020, 126, 828. https://doi.org/10.1007/s00339-020-04014-2
Francis F., Anila E.I., Joseph S.A. Optik 2020, 219, 165210. https://doi.org/10.1016/j.ijleo.2020.165210
Luna-Sánchez J.L., Jiménez-Pérez J.L., Carbajal-Valdez R., Lopez-Gamboa G., Pérez-González M., Correa-Pacheco Z.N. Thermochim. Acta 2019, 678, 178314. https://doi.org/10.1016/j.tca.2019.178314
Martelanc M., Ziberna L., Passamonti S., Franko M. Talanta 2016, 154, 92-98. https://doi.org/10.1016/j.talanta.2016.03.053
Deus W. B.,Ventura M.,Silva J. R.,Andrade L. H. C.,Catunda T.,Lima S. M. Fuel 2019, 253, 1090-1096. https://doi.org/10.1016/j.fuel.2019.05.097
Astrath N.G., Astrath F.B., Shen J., Zhou J., Michaelian K.H., Fairbridge C., Malacarne L.C., Pedreira P.R., Medina A.N., Baesso M.L. Opt. Lett. 2009, 34, 3460-3462. https://doi.org/10.1364/OL.34.003460
Savi E.L., Herculano L.S., Lukasievicz G.V.B., Regatieri H.R., Torquato A.S., Malacarne L.C., Astrath N.G.C. Fuel 2018, 217, 404-408. https://doi.org/10.1016/j.fuel.2017.12.104
Ventura M., Deus W.B., Silva J.R., Andrade L.H.C., Catunda T., Lima S.M. Fuel 2018, 212, 309-314. https://doi.org/10.1016/j.fuel.2017.10.069
Proskurnin M.A., Chernysh V.V., Pakhomova S.V., Kononets M.Y., Sheshenev A.A. Talanta 2002, 57, 831-839. https://doi.org/10.1016/S0039-9140(02)00128-5
Khabibullin V.R., Ratova D.V., Stolbov D.N., Mikheev I.V., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 2126. https://doi.org/10.3390/nano13142126
Shen J., Lowe R.D., Snook R.D. Chem. Phys. 1992, 165, 385-396. https://doi.org/10.1016/0301-0104(92)87053-C
Khabibullin V.R., Usoltseva L.O., Mikheev I.V., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 1006. https://doi.org/10.3390/nano13061006
Kuzmina E.A., Dubinina T.V., Borisova N.E., Tomilova L.G. Macroheterocycles 2017, 10, 520-525. https://doi.org/10.6060/mhc171253d
Kuzmina E.A., Dubinina T.V., Tomilova L.G. New J. Chem. 2019, 43, 9314-9327. https://doi.org/10.1039/C9NJ01755K
Yahya M., Nural Y., Seferoğlu Z. Dyes Pigm. 2022, 198, 109960. https://doi.org/10.1016/j.dyepig.2021.109960
Kuzmina E.A., Dubinina T.V., Vasilevsky P.N., Saveliev M.S., Gerasimenko A.Y., Borisova N.E., Tomilova L.G. Dyes Pigm. 2021, 185, 108871. https://doi.org/10.1016/j.dyepig.2020.108871
Timoumi A., Dastan D., Jamoussi B., Essalah K., Alsalmi O.H., Bouguila N., Abassi H., Chakroun R., Shi Z., Ţălu Ş. Molecules 2022, 27, 6151. https://doi.org/10.3390/molecules27196151
Zouaghi M.O., Arfaoui Y., Champagne B. Opt. Mater. 2021, 120, 111315. https://doi.org/10.1016/j.optmat.2021.111315
Brennetot R., Georges J. Spectrochim. Acta, A 1999, 55, 381-395. https://doi.org/10.1016/S1386-1425(98)00199-1
Escalona R. Opt. Commun. 2008, 281, 388-394. https://doi.org/10.1016/j.optcom.2007.09.048
Dovichi N.J., Bialkowski S.E. C R C Crit. Rev. Anal. Chem. 1987, 17, 357-423. https://doi.org/10.1080/10408348708542799
Netzahual-Lopantzi Á., Sánchez-Ramírez J.F., Jiménez-Pérez J.L., Cornejo-Monroy D., López-Gamboa G., Correa-Pacheco Z.N. Appl. Phys. A 2019, 125, 588. https://doi.org/10.1007/s00339-019-2891-3
Augustine A.K., Mathew S., Girijavallabhan C.P., Radhakrishnan P., Nampoori V.P.N., Kailasnath M. J. Opt. 2014, 44, 85-91. https://doi.org/10.1007/s12596-014-0213-x
Oliveira G.M., Zanuto V.S., Flizikowski G.A.S., Kimura N.M., Sampaio A.R., Novatski A., Baesso M.L., Malacarne L.C., Astrath N.G.C. J. Mol. Liq. 2020, 312, 113381. https://doi.org/10.1016/j.molliq.2020.113381
Georges J. Spectrochim. Acta A 2008, 69, 1063-1072. https://doi.org/10.1016/j.saa.2007.07.062
Pedreira P.R.B., Hirsch L.R., Pereira J.R.D., Medina A.N., Bento A.C., Baesso M.L., Rollemberg M.C., Franko M., Shen J. J. Appl. Phys.s 2006, 100, 044906. https://doi.org/10.1063/1.2245201
Jiménez Pérez J.L., Sanchez Ramírez J.F., Cruz Orea A., Gutiérrez Fuentes R., Cornejo-Monroy D., López-Muñoz G.A. J. Nano Res. 2010, 9, 55-60. https://doi.org/10.4028/www.scientific.net/JNanoR.9.55
Usoltseva L.O., Volkov D.S., Avramenko N.V., Korobov M.V., Proskurnin M.A. Nanosystems: Physics, Chemistry, Mathematics 2018, 9, 17-20. https://doi.org/10.17586/2220-8054-2018-9-1-17-20
Fischer M., Georges J. Spectrochim. Acta, A 1997, 53, 1419-1430. https://doi.org/10.1016/S0584-8539(97)00027-5
Lopez-Bueno C., Suarez-Rodriguez M., Amigo A., Rivadulla F. Phys. Chem. Chem. Phys. 2020, 22, 21094-21098. https://doi.org/10.1039/D0CP03778H
Kawazumi H., Kaieda T., Inoue T., Ogawa T. Chem. Phys. Lett. 1998, 282, 159-163. https://doi.org/10.1016/S0009-2614(97)01239-6
Arnaud N.,Georges J. Spectrochim. Acta, A 2004, 60, 1817-1823. https://doi.org/10.1016/j.saa.2003.09.019
Arnaud N.,Georges J. Spectrochim. Acta, A 2001, 57, 1295-1301. https://doi.org/10.1016/S1386-1425(00)00465-0
Zhirkov A.A., Bendrysheva S.N., Proskurnin M.A., Ragozina N.Y., Zuev B.K. Mosc. Univer. Chem. Bull. 2009, 64, 87-92. https://doi.org/10.3103/S0027131409020047
Georges J.,Paris T. Anal. Chim. Acta 1999, 386, 287-296. https://doi.org/10.1016/S0003-2670(99)00046-X
Arnaud N.,Georges J. Spectrochim. Acta, A 2001, 57, 1085-1092. https://doi.org/10.1016/S1386-1425(00)00425-X
Franko M., Tran C.D. J. Phys. Chem. 2002, 95, 6688-6696. https://doi.org/10.1021/j100170a057
Colcombe S.M., Lowe R.D., Snook R.D. Anal. Chim. Acta 1997, 356, 277-288. https://doi.org/10.1016/S0003-2670(97)00475-3
Zhirkov A.A., Nikiforov A.A., Tsar'kov D.S., Volkov D.S., Proskurnin M.A., Zuev B.K. J. Analyt. Chem. 2012, 67, 290-296. https://doi.org/10.1134/S1061934812010212
Abbasgholi-Na B., Nokhbeh S.R., Aldaghri O.A., Ibnaouf K.H., Madkhali N., Cabrera H. Polymers 2022, 14, 2707. https://doi.org/10.3390/polym14132707
Ruzzi V., Buzzaccaro S., Piazza R. Polymers 2023, 15, 1283. https://doi.org/10.3390/polym15051283
Colcombe S.M., Snook R.D. Analyt. Chim. Acta 1999, 390, 155-161. https://doi.org/10.1016/S0003-2670(99)00163-4
Khabibullin V.R., Franko M., Proskurnin M.A. Nanomaterials (Basel) 2023, 13, 430. https://doi.org/10.3390/nano13030430
Rodriguez L.G., Iza P., Paz J.L. J. Nonlinear Opt. Phys. Mater. 2016, 25, 1650022. https://doi.org/10.1142/S0218863516500223
Mohebbifar M.R. Optik 2021, 242, 166902. https://doi.org/10.1016/j.ijleo.2021.166902
Leulescu M., Rotaru A., Pălărie I., Moanţă A., Cioateră N., Popescu M., Morîntale E., Bubulică M.V., Florian G., Hărăbor A., Rotaru P. J. Therm. Anal. Calorim. 2018, 134, 209-231. https://doi.org/10.1007/s10973-018-7663-3
Dubinina T.V., Paramonova K.V., Trashin S.A., Borisova N.E., Tomilova L.G., Zefirov N.S. Dalton Trans. 2014, 43, 2799-2809. https://doi.org/10.1039/C3DT52726C
Rauf M.A., Hisaindee S., Graham J.P., Nawaz M. J. Mol. Liq. 2012, 168, 102-109. https://doi.org/10.1016/j.molliq.2012.01.008
Lebedeva N.S., Petrova O.V., Vyugin A.I., Maizlish V.E., Shaposhnikov G.P. Thermochim. Acta 2004, 417, 127-132. https://doi.org/10.1016/j.tca.2004.01.023
Slota R., Dyrda G. Inorg. Chem. 2003, 42, 5743-5750. https://doi.org/10.1021/ic0260217
Voronina A.A., Filippova A.A., Znoiko S.A., Vashurin A.S., Maizlish V.E. Russ. J. Inorg. Chem. 2015, 60, 1407-1414. https://doi.org/10.1134/S0036023615110236
Vashurin A., Filippova A., Znoyko S., Voronina A., Lefedova O., Kuzmin I., Maizlish V., Koifman O. J. Porphyrins Phthalocyanines 2015, 19, 983-996. https://doi.org/10.1142/S1088424615500753
Kurian A., Bindhu C.V., Nampoori V.P.N. J. Opt. 2015, 37, 43-50. https://doi.org/10.1007/BF03354836
