Antimicrobial Photodynamic Therapy Activity Properties of 2,6-Brominated and -Iodinated BODIPY Core Dyes and their π-Extended 3,5-Distyryl Analogues

  • Akwesi Ndundu
  • Nthabeleng R. Molupe
  • Azole Sindelo
  • Lohohola Osomba
  • Malongwe K’Ekuboni
  • Bokolombe P. Ngoy
  • John Mack
  • Tebello Nyokong

Аннотация

The photodynamic antimicrobial chemotherapy (PACT) activity properties of 2,6-dibrominated and -diiodinated meso-methyl phenyl ester BODIPY dyes π-extended with 3,5-p-dibenzyloxystyryl groups at the 3,5-positions were investigated against Gram-(+) Staphylococcus aureus and Gram-(−) Escherichia coli bacteria and Candida albicans fungus using LEDs with output maxima at 660 and 530 nm. The core dyes were found to have significantly higher PACT activities than the π-extended dyes in the context of the Gram-(+) and -(−) bacterial strains, while low PACT activity was also observed against Candida albicans with the 2,6-dibrominated core dye. The results are consistent with the trends reported in a previous study with BODIPY core and 3,5-divinylene dyes and provide further evidence that research related to the PACT activity properties of BODIPYs should focus primarily on halogenated core dyes. The use of a methyl-β-cyclodextrin inclusion complex was found to significantly enhance the aqueous solubility and PACT activity of the 2,6-diiodinated with 3,5-p-dibenzyloxystyryl groups at the 3,5-positions.

Литература

Mamone L., Ferreyra D.D., Gándara L., Di Venosa G., Vallecorsa P., Sáenz D. J. Photochem. Photobiol. B. 2016, 161, 222-229. https://doi.org/10.1016/j.jphotobiol.2016.05.026

Xu Z., Gao Y., Meng S., Yang B., Pang L., Wang C., Liu T. Front. Microbiol. 2016, 7, 242. https://doi.org/10.3389/fmicb.2016.00242

Liu Y., Qin R., Zaat S.A.J., Breukink E., Heger M. J. Clin. Transl. Res. 2015, 1, 140-167. https://doi.org/10.18053/jctres.201503.002

Cieplik, F., Deng, D., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A.,Maisch, T. Crit. Rev. Microbiol. 2018, 44, 571-589. https://doi.org/10.1080/1040841X.2018.1467876

Youf R., Müller M., Balasini A., Thétiot F., Müller M., Hascoët A., Jonas U., Schönherr H., Lemercier G., Montier T., Le Gall T. Pharmaceutics 2021, 13, 1995. https://doi.org/10.3390/pharmaceutics

Treibs A., Kreuzer F.H. Justus Liebigs Ann. Chem. 1968, 718, 208-223. https://doi.org/10.1002/jlac.19687180119

Arbeloa T.L., Arbeloa F.L., Arbeloa I.L., Garcia-Moreno I., Costela A., Sastre R., Amat-Guerri F. Chem. Phys. Lett. 1999, 299, 315-321. https://doi.org/10.1016/S0009-2614(98)01281-0

Ngoy B.P., May A.K., Mack J., Nyokong, T. J. Mol. Struct. 2019, 1175, 745-753. https://doi.org/10.1016/j.molstruc.2018.08.012

Harris J., May A.K., Ngoy B.P., Mack J., Nyokong, T. J. Porphyrins Phthalocyanines 2019, 23, 63-75. https://doi.org/10.1142/S1088424619500019

Trieflinger C., Rurack K., Daub J. Angew. Chem. Int. Ed. 2005, 44, 2288-2291. https://doi.org/10.1002/anie.200462377

Gabe Y., Ueno T., Urano Y., Kojima H., Nagano T. Anal. Biochem. 2006, 386, 621-626. https://doi.org/10.1007/s00216-006-0587-y

Bomanda B.T., Waudo W., Ngoy B.P., Muya J.T., Mpiana P.T., Mbala M., Openda I., Mack J., Nyokong T. Macroheterocycles 2018, 11, 429-437. https://doi.org/10.6060/mhc180898n

May A.K., Ngoy B.P., Mack J., Nyokong T. J. Porphyrins Phthalocyanines 2024, 28, 88-96. https://doi.org/10.1142/S1088424623501316

Sen P., Sindelo A., Nnaji N., Mack J., Nyokong T. Photochem. Photobiol. 2023, 99, 947-956. https://doi.org/10.1111/php.13698

Ngoy B.P., Hlatshwayo Z., Nwaji N., Fomo G., Mack J., Nyokong T. J. Porphyrins Phthalocyanines 2018, 22, 413-422. https://doi.org/10.1142/S1088424617500857

Saokham P., Muankaew C., Jansook P., Loftsson T. Molecules 2018, 23, 1161. https://doi.org/10.3390/molecules23051161

Gandra N., Frank A.T., Le Gendre O., Sawwan N., Aebisher D., Liebman J.F., Houk K.N., Greer A., Gao R. Tetrahedron 2006, 62, 10771−10776. https://doi.org/10.1016/j.tet.2006.08.095

Ogunsipe A., Maree D., Nyokong T. J. Mol. Struct. 2003, 650, 131−140. https://doi.org/10.1016/S0022-2860(03)00155-8

Fischer M., Georges J. Chem. Phys. Lett. 1996, 260, 115−118. https://doi.org/10.1016/0009-2614(96)00838-X

Jiao L., Pang W., Zhou J., Wei Y., Mu X., Bai G., Hao E. J. Org. Chem. 2011, 76, 9988−9996. https://doi.org/10.1021/jo201754m

Ngoy B.P., Molupe N., Harris J., Fomo G., Mack J., Nyokong T. J. Porphyrins Phthalocyanines 2017, 21, 431−438. https://doi.org/10.1142/S1088424617500420

Zhu S., Zhang J., Vegesna G., Tiwari A., Luo F.-T., Zeller M., Luck R., Li H., Green S., Liu H. RSC Adv. 2012, 2, 404−407. https://doi.org/10.1039/C1RA00678A

Miclea L.-M., Vlaia L., Vlaia V., Hădărugă D.I., Mircioiu C. Farmacia 2010, 58, 583−593.

Hedges A.R. Chem. Rev. 1998, 98, 2035−2044. https://doi.org/10.1021/cr970014w

Molupe N., Babu B., Prinsloo E., Kaassis A., Edkins K., Mack J., Nyokong T. J. Porphyrins Phthalocyanines 2019, 23, 1486−1494. https://doi.org/10.1142/S1088424619501633

Sindelo A., Osifeko O.L., Nyokong T. Inorg. Chim. Acta 2018, 476, 68−76. https://doi.org/10.1016/j.ica.2018.02.020

Chavez-Esquivel G., Cervantes-Cuevas H., Ybieta-Olvera L.F., Briones M.C., Acosta D., Cabello, J. Mater. Sci. Eng. C, 2021, 123, 111934. https://doi.org/10.1016/j.msec.2021.111934

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino, J., Zheng, G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A. Jr, Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision E.01, Gaussian Inc., Wallingford CT, 2009.

Grimme S., Antony J., Ehrlich S., Krieg H. J. Chem. Phys. 2010, 132, 154104. https://doi.org/10.1063/1.3382344

Lu H., Mack J., Yang Y., Shen Z. Chem. Soc. Rev. 2014, 43, 4778−4823. https://doi.org/10.1039/C4CS00030G

Ngoy B.P., May A.K., Mack J., Nyokong T. Front. Chem. 2019, 7, 740. https://doi.org/10.3389/fchem.2019.00740

Wardlaw J.L., Sullivan T.J., Lux C.N., Austin F.W. Vet. J. 2012, 192, 374−377https://doi.org/10.1016/j.tvjl.2011.09.007

Ryskova L., Buchta V., Slezak R. Central Eur. J. Biology 2010, 5, 400-406. https://doi.org/10.2478/s11535-010-0032-2

Ghorbani J., Rahban D., Aghamiri S., Teymouri A., Bahador A. Laser Ther. 2018, 27, 293-302. https://doi.org/10.5978/islsm.27_18-RA-01

Sperandio F.F., Huang Y.Y., Hamblin M.R. Recent Pat. Antiinfect. Drug Discov. 2013, 8, 108-120. https://doi.org/10.2174/1574891X113089990012

Zgurskaya H.I., López C.A., Gnanakaran S. ACS Infect. Dis. 2016, 1, 512-522. https://doi.org/10.1021/acsinfecdis.5b00097

Cieplik F., Deng D., Crielaard W., Buchalla W., Hellwig E., Al-Ahmad A., Maisch T. Crit. Rev. Microbiol. 2018, 44, 571-589. https://doi.org/10.1080/1040841X.2018.1467876

Poulain D. Crit. Rev. Microbiol. 2015, 41, 208-17. https://doi.org/10.3109/1040841X.2013.813904

Опубликован
2024-12-24
Как цитировать
Ndundu, A., Molupe, N., Sindelo, A., Osomba, L., K’Ekuboni, M., Ngoy, B., Mack, J., & Nyokong, T. (2024). Antimicrobial Photodynamic Therapy Activity Properties of 2,6-Brominated and -Iodinated BODIPY Core Dyes and their π-Extended 3,5-Distyryl Analogues. Макрогетероциклы/Macroheterocycles, 17(4), 306-314. https://doi.org/10.6060/mhc245998n
Раздел
Дипиррометены