Cu(II) porphyrin-Mediated Reed-Straw-Carbon-Based Cu-N-C Catalysts for Efficient Electrocatalytic Nitrate Reductions
Аннотация
Herein, the CuIIporphyrin-mediated reed-straw-carbon-based Cu-N-C catalyst was prepared through high-temperature thermal treatment, and the structures were characterized by SEM, XRD, Raman, FT-IR and XPS. During the electrocatalytic experiments, the Cu-N-C catalyst exhibits excellent nitrate reduction performance (56.33%) and high energy utilization efficiency (63.16%) at E = -1.3V. Also, the electrocatalytic stability and ion influence in the simulated waste water were also investigated. These results provide an opportunity to further explore the efficient electrochemical removal of nitride from M-N-C catalysts.
Литература
Lim J., Fernández C.A., Lee S.W., et al. ACS Energy Lett. 2021, 6, 3676-3685. https://doi.org/10.1021/acsenergylett.1c01614
Chuan D. Z., Yu C., Qian Y., et al. J. Phys. Chem. C 2019, 123, 27286-27294. https://doi.org/10.1021/acs.jpcc.9b05728
Hou P.F., Yuan W.S., Li G.H., et al. Agron. J. 2021, 113, 5027-5039. https://doi.org/10.1002/agj2.20772
Xin X., Yi Y. Z., Hong R P., et al. Environ. Sci. Technol. 2025, 59(1), 467-477. https://doi.org/10.1021/acs.est.4c08197
Jun J. W., Xiao C. L., Beusen A.H.W., et al. Environ. Sci. Technol. 2023, 57(48), 19395-19406. https://doi.org/10.1021/acs.est.3c06150
Kalaycıoğlu Z., Erim F.B. J. Agric. Food Chem. 2019, 67, 7205-7222. https://doi.org/10.1021/acs.jafc.9b01194
Guidelines for drinking-water quality: 4th edition incorporating the 1st and 2nd addenda, https://www.who.int/publications/i/item/9789240045064 (date of access 07.05.2025)
Yoshino H., Kawase Y. Ind. Eng. Chem. Res. 2013, 52, 17829-17840. https://doi.org/10.1021/ie402797j
Chen A.H., Liang H.X., Chen T.M., et al. J. Soils Sediments 2016, 16, 1352-1359. https://doi.org/10.1007/s11368-015-1161-z
Brady A.R., Vega M.A.P., Stiegler A.N., et al. ACS EST Water 2023. 3(5), 1352-1363. https://doi.org/10.1021/acsestwater.3c00030
Ki-Myeong Lee, Joohyun Kim, Jee Yeon Kim, et al. ACS EST Engg. 2025, 5, 1122–1130. https://doi.org/10.1021/acsestengg.4c00820
Xin Y.K., Jun J.D., Yu Z.L., et al. Agr. Water Manage. 2021, 250, 106826. https://doi.org/10.1016/j.agwat.2021.106826
Xu Y.H., Ma Y., Cayuela M.L., et al. Geoderma. 2020. 358, 113984. https://doi.org/10.1016/j.geoderma.2019.113984
Abascal E., Gómez-Coma L., Ortiz I., et al. Sci. Total Environ. 2022, 810, 152233. https://doi.org/10.1016/j.scitotenv.2021.152233
Hang D., Hao C., Shepsko Ch., et al. ACS EST Water 2023. 3(9), 2989-2995. https://doi.org/10.1021/acsestwater.3c00220
Wei W., Hu X.Y., Yang S., et al. Food Res. Int. 2022, 152, 110906. https://doi.org/10.1016/j.foodres.2021.110906
Hu X.Y., Wei W., Zhang J.Y., et al. Food Biosci. 2024, 57, 103612. https://doi.org/10.1016/j.fbio.2024.103612
Hai Y.L., Jia Y.H., Ze H.L., et al. ACS EST Water 2024. 4(12), 5543-5554. https://doi.org/10.1021/acsestwater.4c00600
Hang D., Hao C., SenGupta A.K. ACS EST Water 2021. 1(10), 2275-2283. https://doi.org/10.1021/acsestwater.1c00254
Werth Ch.J., Chen X.Y., Troutman J.P. ACS EST Engg. 2021. 1(1), 6-20. https://doi.org/10.1021/acsestengg.0c00076
Li Z., Zhai M., Wang X., et al. ACS Appl. Mater. Inter. 2024, 16, 56134-56145. https://doi.org/10.1021/acsami.4c12144
Hong K. L., Ning G. M., Yun C. L., et al. ACS Appl. Mater. Inter. 2024, 16, 46312-46322. https://doi.org/10.1021/acsami.4c09119
Yuan C.L., Bai Y.S., Yu H.C., et al. ACS Catal. 2024, 14, 9797-9811. https://doi.org/10.1021/acscatal.4c02717
Xiao Y.S., Xin Y.L., Hong H., et al. Nano Lett. 2024, 24, 14602-14609. https://doi.org/10.1021/acs.nanolett.4c02830
Fang Z.L., Di Z., Fang X.S., et al. ACS Catal. 2024, 14, 9176-9187. https://doi.org/10.1021/acscatal.4c01752
Xiang A., Hao R.W., Xia Z., et al. ACS Appl. Mater. Inter. 2025, 17, 2844-2862. https://doi.org/10.1021/acsami.4c16972
Ying D.S., Peng S., Ji G.W., et al. J. Colloid Interface Sci. 2025, 686, 711-721. https://doi.org/10.1016/j.jcis.2025.02.002
Jiao J., Yuan Q., Tan M. et al. Nat. Commun. 2023, 14, 6164. https://doi.org/10.1038/s41467-023-41679-8
Yang G., Pellessier J., Zi C.D., et al. ACS Sustainable Chem. Eng. 2023, 11(18), 7231-7243. https://doi.org/10.1021/acssuschemeng.3c01222
Sun Y., Li X., Zhang T., et al. Angew. Chem. Int. Ed. 2021, 60(39), 21575. https://doi.org/10.1002/anie.202109116
Ya Z.Z., Rui H.L., Xia F.T., et al. J. Am. Chem. Soc. 2023, 145, 3647-3655. https://doi.org/10.1021/jacs.2c12933
Yang Y., Hu C., Shan J., et al. Angew. Chem. Int. Ed. 2023, 62(20), e202300989. https://doi.org/10.1002/anie.202300989
Zhao Y., Zhang Sh., Han C., et al. Chem. Eng. J. 2023, 468, 143517. https://doi.org/10.1016/j.cej.2023.143517
Fan X., Bo M.L., Bo W.A., et al. J. Am. Chem. Soc. 2024, 146, 33569-33578. https://doi.org/10.1021/jacs.4c11121
Kumar G., Dey R.S. Inorg. Chem. 2023, 62, 13519-13529. https://doi.org/10.1021/acs.inorgchem.3c01925
Yan J.L., Ya R.L., Jia H.L., et al. Ind. Eng. Chem. Res. 2024, 63, 20553-20562. https://doi.org/10.1021/acs.iecr.4c03145
Xiao T.C., Rui L.S., Xiao S.Z., et al. Langmuir 2022, 38, 4948-4957. https://doi.org/10.1021/acs.langmuir.2c00347
Wang X., Xu Y.W., Li Y.H., et al. Food Chem. 2021, 357, 129762. https://doi.org/10.1016/j.foodchem.2021.129762
