First Macrocyclic 1,2,3-Triazolyl Uridine Analogues
Аннотация
Катализируемой медью реакцией азид-алкинового циклоприсоединения (CuAAC) впервые получены два мароциклических 1,2,3-триазоловых аналогов уридина. 29-Членный макроцикл состоял из одной молекулы урацила, двух молекул D-рибофуранозы и четырех молекул 1,2,3-триазола. 58-Членный макроцикл состоял из двух молекул урацила, четырех молекул D-рибофуранозы и восьми молекул 1,2,3-триазола
Литература
Kataev V.E., Garifullin B.F. Chem. Heterocycl. Compd. 2021, 57, 326-341. https://doi.org/10.1007/s10593-021-02912-8
Pastuch-Gawołek G., Gillner D., Krol E., Walczak K., Wandzik I. Eur. J. Pharm. 2019, 865, 172747. https://doi.org/10.1016/j.ejphar.2019.172747
Seley-Radtke K.L., Yates M.K. Antiviral Res. 2018, 154, 66-86. https://doi.org/10.1016/j.antiviral.2018.04.004
Nakajima M., Itoi K., Takamatsu Y., Kinoshita T., Okazaki T., Kawakubo K., Shindo M., Honma T., Tohjigamori M., Haneishi T. J. Antibiot. 1991, 44, 293-300. https://doi.org/10.7164/antibiotics.44.293
Kumar R., Kumar M., Kumar V., Kumar A., Haque N., Kumar R., Prasad A.K. Synth. Commun. 2020, 50, 3369-3396. https://doi.org/10.1080/00397911.2020.1803914
Koole L.H., Neidle S., Crawford M.D., Krayevski A.A., Gurskaya G.V., Sandstrom A., Wu J.-C., Tong W., Chattopadhyaya J. J. Org. Chem. 1991, 56, 6884-6892, https://doi.org/10.1021/jo00024a034
Marquez V.E., Ezzitouni A., Russ P., Siddiqui M.A., Ford H. Jr., Feldman R.J., Mitsuya H., George C., Barchi J.J. Jr. J. Am. Chem. Soc. 1998, 120, 2780-2789, https://doi.org/10.1021/ja973535
Braasch D.A., Corey D.R. Chem. Biol. 2001, 8, 1-7, https://doi.org/10.1016/S1074-5521(00)00058-2
Zhang Q., He P., Zhou G., Gu Y., Fu T., Xue D., Liu H.-M. Carbohydr. Res. 2013, 382, 65-70, https://doi.org/10.1016/j.carres.2013.10.004
Zhao Y., Shu R., Liu J. Mol. Ther. Nucleic Acids 2021, 26, 997-10133, https://doi.org/10.1016/j.omtn.2021.09.002
Okabe M., Sun R.-C. Tetrahedron Lett. 1989, 30, 2203-2206, https://doi.org/10.1016/S0040-4039(00)99648-5
Beard A. R., Butler P.I., Mann J., Partlett N.K. Carbohydr. Res. 1990, 205, 87-91https://doi.org/10.1016/0008-6215(90)80130-U
Webb T.R., Mitsuya H., Broder S. J. Med. Chem. 1988, 31, 1475-1479, https://doi.org/10.1021/jm00402a038
Callam C.S., Gadikota R.R., Lowary T.L. Synlett 2003, 9, 1271-1274, https://doi.org/10.1055/s-2003-40335
Counde O-Y., Kurz W., Eugui E.M., Mc Roberts M.J., Verheyden J.H.P., Kurz I.J., Walker K.A.M. Tetrahedron Lett. 1992, 33, 41-44, https://doi.org/10.1016/S0040-4039(00)77668-4
Alibes R., Alvarez-Larena A., de March P., Figueredo M., Font J., Parella T., Rustullet A. Org. Lett., 2006, 8, 491-494, https://doi.org/10.1021/ol052794y
Wang G., Girardet J.-L., Gunic E. Tetrahedron 1999, 55, 7707-7724. https://doi.org/10.1016/S0040-4020(99)00394-4
Obika S., Andoh J., Sugimoto T., Miyashita K., Imanishi T. Tetrahedron Lett. 1999, 40, 6465-6468, https://doi.org/10.1016/S0040-4039(99)01324-6
Olsen A.G., Rajwanshi V.K., Nielsen C., Wengel J. J. Chem. Soc. Perkin Trans 1 2000, 21, 3610-3614, https://doi.org/10.1039/b005469k
Srivastava S., Maikhuri V.K., Kumar R., Bohra K., Singla H., Maity J., Prasad A.K. Carbohydr. Res. 2018, 470, 19-25, https://doi.org/10.1016/j.carres.2018.09.007
Zhong S., Mondon M., Pilard S., Len C. Tetrahedron 2008, 64, 7828-7836, https://doi.org/10.1016/j.tet.2008.05.112
Len C., Mondon M., Lebreton J. Tetrahedron 2008, 64, 7453-7475, https://doi.org/10.1016/j.tet.2008.04.095
Mieczkowski A., Roy V., Agrofoglio L.A. Chem. Rev. 2010, 110, 1828-1856, https://doi.org/10.1021/cr900329y
Clark V.M., Todd A.R., Zussman J. J. Chem. Soc. 1951, 2952-2958, https://doi.org/10.1039/jr9510002952
Ikehara M. Acc. Chem. Res. 1969, 2, 47-53, https://doi.org/10.1021/ar50014a003
Holmes R., Robins R.K. J. Org. Chem. 1963, 28, 3483-3486, https://doi.org/10.1021/jo01047a050
Capon R.J., Trotter N.S. J. Nat. Prod. 2005, 68, 1689-1691, https://doi.org/10.1021/np0502692
Wang P., Hollecker L., Pankiewicz K.W., Patterson S.E., Whitaker T., McBrayer T.R., Tharnish P.M., Sidwell R.W., Stuyver L.J., Otto M.J., Schinazi R.F., Watanabe K.A. J. Med. Chem. 2004, 47, 6100-6103, https://doi.org/10.1021/jm0401210
Wang P., Du J., Rachakonda S., Chun B.-K., Tharnish P.M., Stuyver L.J., Otto M.J., Schinazi R.F., Watanabe K.A. J. Med. Chem. 2005, 48, 6454-6460, https://doi.org/10.1021/jm058223t
Chun B.K., Wang P., Hassan A., Du J., Tharnish P.M., Stuyver L.J., Otto M.J., Schinazi R.F., Watanabe K.A. Tetrahedron Lett. 2005, 46, 2825-2827, https://doi.org/10.1016/j.tetlet.2005.02.120
Calcerrada-Munoz N., O'Neil I., Cosstick R. Nucleos. Nucleot. Nucl. 2001, 20, 1347-1350, https://doi.org/10.1081/NCN-100002552
Sengupta J., Mukhopadhyay R., Bhattacharjya A. J. Org. Chem. 2007, 72, 4621-4625, https://doi.org/10.1021/jo062554b
Das S.N., Rana R., Chatterjee S., Kumar G.S., Mandal S.B. J. Org. Chem. 2014, 79, 9958-9969, https://doi.org/10.1021/jo501857k
Gaffney B.L., Jones R.A. Org. Lett. 2014, 16, 158-161, https://doi.org/10.1021/ol403154w
Andreeva O.V., Belenok M.G., Saifina L.F., Shulaeva M.M., Dobrynin A.B., Sharipova R.R., Voloshina A.D., Saifina 36.A.F., Gubaidullin A.T., Khairutdinov B.I., Zuev Y.F., Semenov V.E., Kataev V.E. Tetrahedron Lett. 2019, 60, 151276, https://doi.org/10.1016/j.tetlet.2019.151276
Andreeva O.V., Garifullin B.F., Zarubaev V.V., Slita A.V., Yesaulkova I.L., Volobueva A.S., Belenok M.G., Man'kova M.A., Saifina L.F., Shulaeva M.M., Voloshina A.D., Lyubina A.P., Semenov V.E., Kataev V.E. Molecules 2021, 26, 3678, https://doi.org/10.3390/molecules26123678
Agrahari A.K., Bose P., Jaiswal M.K., Rajkhowa S., Singh A.S., Hotha S., Mishra N., Tiwari V.K. Chem. Rev. 2021, 121, 7638-7956, https://doi.org/10.1021/acs.chemrev.0c00920
Zheng X.-A., Wang R., Gong S.-S., Kong R., Liu R., Sun Q. Nucleos. Nucleot. Nucl. 2018, 37, 79-88, https://doi.org/10.1080/15257770.2017.1414242